Font Size: a A A

Flame and solution syntheses of high-dimensional homo- and hetero-structured nanomaterials

Posted on:2015-02-02Degree:Ph.DType:Thesis
University:Rutgers The State University of New Jersey - New BrunswickCandidate:Dong, ZhizhongFull Text:PDF
GTID:2471390017994091Subject:Mechanical engineering
Abstract/Summary:
Tungsten-oxide and molybdenum-oxide nanostructures are fabricated directly from the surfaces of metal substrates using counter-flow diffusion-flame synthesis method, which allows for correlation of morphologies with local conditions. Computational simulations aid in tailoring the flame structure with respect to chemical species and temperature. Furthermore, methane flames are compared with hydrogen flames, which only have H2O (and no CO2) as product species. The temperature profiles of the methane and hydrogen flames are strategically matched in order to compare the effect of chemical species produced by the flame which serve as reactants for nanostructure growth. Single-crystalline, well-vertically-aligned, and dense WO2.9 nanowires (diameters of 20-50 nm, lengths of >10 microm) are obtained at a gas-phase temperature of 1720 K, where the CO2 route is presumed to seed the growth of nanowires at the nucleation stage, with subsequent vapor-solid growth.;Similarly, single-crystalline, vertically-aligned, and dense MoO 2 nanoplates (thicknesses of 60-80 nm, widths of 200-450 nm, lengths of 1-2 microm) are obtained at 1720 K. Nanoheterostructures are fabricated by decorating/coating the above flame-synthesized tungsten-oxide nanowires with other materials using an aqueous solution synthesis method. With WO 2.9 nanowires serving as the scaffold, sequential growth of hexagonal ZnO nanoplates, Zn2SnO4 nanocubes, and SnO2 nanoparticles are attained for different Zn2+:Sn2+ concentration ratios. High-resolution transmission electron microscopy (HRTEM) of the interfaces at the nanoheterojunctions show atomically abrupt interfaces for ZnO/WO2.9 and Zn2SnO4/WO2.9, despite lattice mismatches. Separately, co-axial nanoheterostructures are fabricated using ionic-liquid solutions, where single-crystal nanoscale Al layer are electrodeposited on the surfaces of the above flame-synthesized WO2.9 nanowires. These tungsten-oxide/aluminum coaxial nanowire arrays constitute thermite nanocomposites with high reactivity. These geometries not only present an avenue to tailor heat-release characteristics due to anisotropic arrangement of fuel and oxidizer, but also possibly eliminate or at least minimize the presence of Al2O3 passivation films between the aluminum and metal oxide.
Keywords/Search Tags:Flame
Related items