Font Size: a A A

Optimization of Li-ion Conductivity of Garnet-type Li 5La3Nb2O12 by Nb-site Substitution Approach

Posted on:2016-07-14Degree:M.ScType:Thesis
University:University of Calgary (Canada)Candidate:Pinzaru, Dana IrinaFull Text:PDF
GTID:2471390017977879Subject:Materials science
Abstract/Summary:PDF Full Text Request
Solid state Li ion electrolytes based on the garnet type crystal structure have been successfully synthesized using the ceramic method. The approach employed in this thesis was doping of the Nb-site in Li 5La3Nb2O12 with Sm and Gd and Li stuffing into the garnet-like oxides for charge balance. The resulting family of compounds have a nominal formula Li5+2xLa3Nb2-xSm xO12 (0 ≤ x ≤ 0.7) and Li5+2xLa3Nb 2-xGdxO12 (0 ≤ x ≤ 0.45).;Experimental techniques used for the characterization of the solid state materials include powder X-ray diffraction (PXRD) to determine the crystal structure, scanning electron microscopy (SEM) to analyze the microstructure, energy dispersive spectroscopy (EDS) to confirm the elemental composition, AC impedance spectroscopy to determine the lithium ion conductivity Fourier transform infrared spectroscopy (FTIR) to confirm the presence of OH - and CO32- groups in the samples and thermogravimetric analysis (TGA) to test the thermal stability of the compound.;The most promising samples were the x = 0.3 member of the Sm-doped family and the x = 0.45 member of the Gd-doped family. Li5.6La3Nb 1.7Sm0.3O12 showed a conductivity of 5.84 x 10 -5 S cm-1 at room temperature, with an activation energy of 0.38 eV in the 25-225 &...
Keywords/Search Tags:Conductivity
PDF Full Text Request
Related items