Font Size: a A A

Healing efficiency of shape memory polyurethane fiber reinforced syntactic foam under applied loa

Posted on:2015-03-25Degree:M.EngType:Thesis
University:Southern University and Agricultural and Mechanical CollegeCandidate:Ogunmekan, BabatundeFull Text:PDF
GTID:2471390017497431Subject:Materials science
Abstract/Summary:PDF Full Text Request
Shape memory composite materials have received a great deal of interest in recent structural developments, both in sandwich and in lightweight structures. Experimental procedures involving the free body healing of these materials have been carried out; however, it is important to investigate the healing behaviors of these SMP materials while under load. In this study, syntactic foams reinforced with strain-hardened short-shape memory polyurethane fibers (SMPUFs) were prepared to evaluate their ability to heal wide-opened cracks using the two-step biomimetic close-then-heal (CTH) self-healing scheme while under varying loads.;The syntactic foam samples manufactured consisted of an epoxy matrix with dispersed thermoplastic particles, glass microballoons and short SMPUFs. The SMPUF strands were cold-drawn (stretched-then-released) for up to four cycles and then cut to 10 mm short fibers before casting the polymer matrix. Three types of syntactic foam specimens, consisting of 5%, 10%, and 15% thermoplastic particle volume fraction compositions, respectively, were manufactured, and notched beam samples were then prepared. Fracture-healing by uniaxial tension was conducted for five cycles on each sample. Material characterization techniques, such as scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), were utilized to highlight the crack healing characteristics and thermal properties. In addition, a high-resolution charge-coupled device (CCD) camera with a resolution of 3.7 x 3.7 &mgr;m/pixel was used to capture the crack tip opening displacement (CTOD). It is seen that the healing ability of the composite varies with changes in both the load carried and the volume fraction of thermoplastic particles. As the thermoplastic volume fraction increased from 5% to 10% to 15%, the tensile strength values recorded decreased, but there was also an increase in the healing efficiency. Moreover, SEM images revealed partial healing in samples with lower thermoplastic particle contents.
Keywords/Search Tags:Healing, Syntactic foam, Memory, Thermoplastic
PDF Full Text Request
Related items