Font Size: a A A

Non-hydrolytic Sol-gel Synthesis of Tin Sulfides

Posted on:2015-04-15Degree:M.SType:Thesis
University:The University of ToledoCandidate:Kaur, RajvinderFull Text:PDF
GTID:2471390017495589Subject:Inorganic Chemistry
Abstract/Summary:
The non-hydrolytic sol-gel (NHSG) process is an effective low temperature route well known for preparing homogeneous metal oxides. Thermodynamically as well as kinetically favored products, which cannot be prepared with the traditional solid-state routes, can be produced using NHSG. This project is focused on the exploration of NHSG synthesis of binary tin sulfides.;In the past few years, metal sulfides have been the subject of significant interest. Much effort has been devoted to understand these materials because of their potential applications in electronic, optical, and superconductor devices.4 Among these materials, tin sulfides are materials of technological importance, which are being explored as semiconductors, anode materials for Li ion batteries, photoconductors, photocatalysts and absorber layer materials in photovoltaic solar cell devices. All of these applications depend upon features like homogeneity, oxidation state, high surface area and purity of the materials. These properties can be difficult to achieve by employing traditional synthetic routes, which require high temperatures due to slow diffusion, limiting the products to thermodynamically stable phases and prohibiting control over properties like particle size and surface area. A variety of low temperature methods are being explored due to the increased demand for such advanced materials.;This project is focused on exploring the NHSG approach to synthesize binary tin sulfides, with the main goal of establishing conditions for the targeted synthesis of different tin sulfide polymorphs with controlled particle size. Being non-oxide materials, tin sulfides can be air sensitive, which requires special attention in handling. All reactions were carried out in absence of oxygen. This project explores the reaction of tin halides with thioethers in a dry solvent medium, leading to the formation of tin sulfides. There are a number of synthetic parameters that can be varied for the NHSG approach. A systematic study was carried out to understand the influence of all reaction variables, which include tin halides, thioethers, solvents, time, temperature, stoichiometry and concentration. Fine tuning of all reaction variables was carried out. The crystallization and phase stability of the as-recovered products was further studied by heat treatments of the samples. A detailed investigation of synthetic variables during NHSG reactions resulted in controlled synthesis of two crystalline tin sulfide polymorphs, SnS and SnS2. A third polymorph, Sn2S3, could be obtained after heat treatments in the temperature range of 400 to 500 °C. Conditions for the targeted synthesis of particles with various sizes and morphologies were established. Samples were characterized by powder X-ray diffraction, electron microscopy in combination with EDS, CHNS analysis and thermo gravimetric/differential thermal analysis.
Keywords/Search Tags:Tin sulfides, NHSG, Synthesis, Materials, Temperature
Related items