Font Size: a A A

Fabrication of Ferrite Thin Film using Low Pressure Metalorganic Chemical Vapor Deposition

Posted on:2015-04-02Degree:Ph.DType:Thesis
University:University of Illinois at ChicagoCandidate:Yang, YiFull Text:PDF
GTID:2471390017491830Subject:Engineering
Abstract/Summary:
This thesis is based on the research work on the multiferroic material fabrications using low pressure metalorganic chemical vapor deposition (MOCVD). Multiferroic material refers to the ones who have two or more ferroic properties, like ferroelectricity, ferromagnetism, ferroelasticity and ferrotoroidicity. Extensive research findings focused on pure nano scale thin films and composites those were related to presenting both ferroelectricity and ferromagnetism coupling within the material.;BiFeO3 (BFO) was known to be the only single phase multiferroic material which exhibited magnetoelectric (ME) coupling effect at room temperature. This coupling effect provided an extra degree of freedom for designs of whole new devices and applications never thought to be possible before. Recently, large ME effect was found in its thin epitaxial-strained films. However, very few papers reported the CVD techniques for depositing BFO thin films so far. Most of these reports used direct liquid injection method to deliver the organometallic reactants during the CVD process (ie. DLICVD). Here, we introduced a novel liquid iron precursor, n-butylferrocene, delivered into the reactor by heating the precursor canisters at certain temperatures for growing BFO thin films. Other crucial MOCVD conditions (reactor's pressure, reactor's temperature, substrates...) were also discussed and optimized. Characterizations for the film composition, crystallinity, ferroelectricity, ferromagnetism and the magneto-dielectric coupling effect were analyzed in detail. The results confirmed that BFO film had multiferroic properties and could be potentially used in future tunable high-frequency devices.;Although single-phase BFO exhibited ME effect, this suffered from problems such as current leakages, weak ME coupling and low ordering temperatures. Doping or ion substitution was a limited way to enhance the ME property since the compounds had definite compositions. Therefore, heterostructures such as bilayered/multilayered thin films, nanoparticles/nanopillars embedded in different materials and nanowires became more promising for the future on-chip integration applications because the coupling in such structures was many orders of magnitude stronger. Another research scientists interested in was the heterostructural magnetostrictive NiFe2O4 (NFO) with piezoelectric materials. NFO was a promising magnetic phase for ME heterostructures due to its low anisotropy, high permeability with high resistivity, low eddy current losses and smaller coercive field. In this study, the nickel ferrite thin films had been deposited using computer controlled MOCVD setup in both co-deposition mode and cyclic-deposition mode. Conditions for CVD process were discussed and optimized for growing NFO thin film. The thin films showed NFO composition, uniformity in chemical states and thickness, trevorite crystalline form, free from carbon contamination and similar magnetic property as other literature reported.
Keywords/Search Tags:Chemical, Low, Thin, Using, Pressure, Multiferroic material, BFO, NFO
Related items