Font Size: a A A

Synthesis, optimization and characterization of carbon quantum dots

Posted on:2017-06-22Degree:M.SType:Thesis
University:Northeastern Illinois UniversityCandidate:Deshpande, VibhaFull Text:PDF
GTID:2471390017459312Subject:Nanoscience
Abstract/Summary:
Quantum dots are Nano-sized structures of semiconductors with unique optical properties that make them a very valuable tool in a wide range of interesting and important applications. Quantum dots can be designed to emit a particular colored light by altering their size; they are long-lived and fluoresce brightly. Consequently, they have been used extensively in biological imaging studies, where they have facilitated the observation of detailed biological processes at the molecular level. The thesis work focuses on understanding the fundamental electronic properties of low dimensional material and their Biological applications. Carbon based Quantum Dots is the main subject in our project due to their biocompatibility and novel optical properties. Here we studied the structural, luminescence, biological properties and applications of carbon based different sizes of quantum dots. Our main goal lied in the formulation of highly florescent, broad range pH and ionic-stable N/S-doped Carbon based Quantum Dots for the purpose of determining or studying Inter and intra Cellular Functions and Imaging Live Cells. The Studies also include the effect of doping carbon based Quantum Dots. Our interest also lies in using scanning probe microscopy to investigate these quantum dots. Since the carbon element is the basis of all biological materials, full carbon nanomaterial's have a lower toxicity compared with other nanomaterial's; simultaneously, the particle size of CQDs is smaller and thus more convenient to enter the cell in vivo, which makes CQDs having great potential applications in the biological fields. In addition, the surface of CQDs contains a lot of functional groups, so that it can be modified with organic, inorganic, polymer, and other substances endowing different functional properties.
Keywords/Search Tags:Quantum dots, Carbon
Related items