Font Size: a A A

Mechanisms and Magnitude of Cenozoic Crustal Extension in the Vicinity of Lake Mead, Nevada and the Beaver Dam Mountains, Utah: Geochemical, Geochronological,Thermochronological and Geophysical Constraints

Posted on:2015-01-05Degree:Ph.DType:Thesis
University:Columbia UniversityCandidate:Almeida, Rafael VFull Text:PDF
GTID:2470390017999713Subject:Geology
Abstract/Summary:
The central Basin and Range Province of Nevada and Utah was one of the first areas in which the existence of widespread low-angle normal faults or detachments was first recognized. The magnitude of associated crustal extension is estimated by some to be large, in places increasing original line lengths by as much as a factor of four. However, rock mechanics experiments and seismological data cast doubt on whether these structures slipped at low inclination in the manner generally assumed. In this dissertation, I review the evidence for the presence of detachment faults in the Lake Mead and Beaver Dam Mountains areas and place constraints on the amount of extension that has occurred there since the Miocene.;Chapter 1 deals with the source-provenance relationship between Miocene breccias cropping out close to Las Vegas, Nevada and their interpreted source at Gold Butte, currently located 65 km to the east. Geochemical, geochronological and thermochronological data provide support for that long-accepted correlation, though with unexpected mismatches requiring modification of the original hypothesis. In Chapter 2, the same data are used to propose a refinement of the timing of ~1.45 Ga anorogenic magmatism, and the distribution of Proterozoic crustal boundaries.;Chapter 3 uses geophysical methods to address the subsurface geometry of faults along the west flank of the Beaver Dam Mountains of southwestern Utah. The data suggest that the range is bounded by steeply inclined normal faults rather than a regional-scale detachment fault. Footwall folding formerly ascribed to Miocene deformation is reinterpreted as an expression of Cretaceous crustal shortening. Fission track data presented in Chapter 4 are consistent with mid-Miocene exhumation adjacent to high-angle normal faults. They also reveal a protracted history dating back to the Pennsylvanian-Permian time, with implications for the interpretation of other basement-cored uplifts in the region.;A key finding of this dissertation is that the magnitude of crustal extension in this region has been overestimated. The pre-extensional width was increased by a factor of two across Lake Mead, through a combination of high-angle normal faulting and strike-slip deformation. Data from the transect across the Beaver Dam Mountains suggest substantially less extension, with the difference accommodated for the most part by displacement on the intervening Las Vegas Valley Shear Zone. The Colorado Plateau-Basin and Range transition zone may be a long-lived tectonic boundary where this assumption may be especially ill-suited.
Keywords/Search Tags:Beaver dam mountains, Lake mead, Crustal extension, Utah, Nevada, Range, Magnitude
Related items