Font Size: a A A

Single-Molecule Measurements of T4 Lysozyme using Carbon Nanotube Electronic Circuits

Posted on:2015-10-27Degree:M.SType:Thesis
University:University of California, IrvineCandidate:Sims, Patrick CraigFull Text:PDF
GTID:2470390017996501Subject:Condensed matter physics
Abstract/Summary:
Because of their unique electronic and chemical properties, single-walled carbon nanotubes (SWNTs) are attractive candidates for label-free, single-molecule sensing and detection applications. In this work, a field-effect transistor (FET) architecture comprised of an individual SWNT is used to transduce the conformational motion of a single T4 lysozyme protein, conjugated to the SWNT side wall, into a corresponding electrical current signal. The SWNTs are grown using chemical vapor deposition, and metal electrical contacts are formed using electron beam evaporation. Using N-(1-Pyrene)maleimide, the protein is conjugated to the SWNT side wall. After conjugation, the sensing area of the device is submerged in an electrolyte solution, and the source-drain current is measured while applying an electrolyte-gate. Analysis of the signal provided single-molecule resolution of the dynamical activity of lysozyme as it hydrolyzes macromolecular peptidoglycan, a component of bacterial cell walls. This analysis revealed seven different independent time scales that govern the activity of lysozyme, the pH dependence of these time scales, and a lower limit on the number rate-limiting steps in lysozyme's hinge opening and closing motions. Furthermore, the signals elucidated differences in how lysozyme traverses and catalyzes structurally varying peptidoglycan constructs.
Keywords/Search Tags:Lysozyme, Single-molecule, Using, SWNT
Related items