Font Size: a A A

Modeling the acoustic signature of an Ocean Explorer class autonomous underwater vehicle

Posted on:2001-11-13Degree:M.SType:Thesis
University:Florida Atlantic UniversityCandidate:Debiesme, Francois-XavierFull Text:PDF
GTID:2468390014953097Subject:Physics
Abstract/Summary:
Autonomous Underwater Vehicles (AUV) rely on acoustics for a number of mission functions such as communications (Acoustic Modem) and vision (Forward and Side Looking Sonars). The AUV acoustic signature (self-noise and vibration) can thus interfere with AUV operations. Additionally, underwater measurements such as turbulence measurements can be contaminated by interference between the AUV generated acoustics pressures and the low pressures of the turbulence. In this thesis a Finite Element and Boundary Element approach is developed to characterize the self-noise (vibration and radiated sound pressure) of a simplified FAU Ocean Explorer AUV. Mechanical excitation from the "podule", which contains the motors for the propulsion and motion control, is assumed in the analysis. The low frequency (less than 1Khz) results are dominated by two types of modes. One type associated with the motion of the "podule" as a rigid body on the vibration isolation supports that connects it to the rest of the AUV structure. The second type is associated with local structural deformations of the "podule", support frame, and AUV hull. Modifying the stiffness of the supports reduces the frequency of the rigid body modes of the "podule", but does not influence the frequencies of the local structural deformations of the "podule" and the rest of the AUV. Decreasing the stiffness of the supports should result in a reduced AUV acoustic signature.
Keywords/Search Tags:AUV, Acoustic, Underwater
Related items