Font Size: a A A

Optical coherence tomography (OCT) in hereditary retinal degenerations: Layer-by-layer analyses in normal and diseased retinas

Posted on:2000-05-08Degree:Ph.DType:Thesis
University:University of PennsylvaniaCandidate:Huang, YijunFull Text:PDF
GTID:2464390014963489Subject:Health Sciences
Abstract/Summary:
OCT is a new technique for non-invasive, non-contact, cross-sectional imaging of biological tissues with micrometer longitudinal resolution. As it applies to the field of ophthalmology, OCT can delineate retinal sublayers based on their backscattering characteristics, and permit quantitative measurement of the structure of retina in vivo.; This dissertation intended to clarify the basis of the OCT signals and whether this procedure has potential for diagnosis and monitoring of human retinal degenerative diseases. Key to this goal are quantitation of OCT signal features and accurate, layer-by-layer correlation of these features with underlying retinal microanatomy. In normal and degenerate avian and swine retinas, OCT signal features were quantified using custom computer programs, and were correlated with cryosections of unfixed retinas obtained at the same retinal location. The results suggested a definable and quantifiable relationship between OCT signal components and retinal microanatomy. The correlation in the outer retina indicated that the OCT posterior highly reflective band, or the outer-retina-choroid complex (ORCC), is attributable to the photoreceptor layer, RPE, and anterior choroid. Further evidence of OCT signal origin was provided by the rd chicken and the rhodopsin P347L mutant transgenic swine. In these animals where photoreceptors had degenerated, OCT abnormalities were observed at the level of and vitreal to the ORCC, consistent with the hypothesis that photoreceptors contribute to the ORCC.; Studies of quantitative OCT analysis in man were also performed. In selected hereditary retinal degenerative diseases in which there was regional difference in retinal function, frequently observed OCT abnormalities that were associated with visual dysfunction were reduced OCT thickness, reduced ORCC thickness, increased reflectivity posterior to ORCC, and abnormal OCT signal lamination. These preliminary results suggested that OCT abnormalities at the level of and posterior to the ORCC are prominent features in these retinal degenerations.; This dissertation represents the first report of quantitative OCT results in hereditary retinal degenerations in experimental animals and humans. Considering that OCT is being used increasingly to investigate, diagnose, and monitor human retinal diseases, insight gained in these studies may direct further studies in mammalian and human retinas and advance this technology to its full potential in ophthalmology.
Keywords/Search Tags:OCT, Retinal, Retinas, ORCC
Related items