Font Size: a A A

Effects of aluminum and zirconia contents on the reaction bonded aluminum oxide process

Posted on:2004-05-24Degree:Ph.DType:Thesis
University:Lehigh UniversityCandidate:Sheedy, Paul MartinFull Text:PDF
GTID:2461390011974133Subject:Engineering
Abstract/Summary:
The effects of aluminum and ZrO2 contents on the reaction and sintering of reaction bonded aluminum oxide (RBAO) were investigated. It was apparent that ZrO2-containing RBAO powders with higher initial aluminum contents (>45 vol%) were increasingly more difficult to react and sinter. During oxidation in air, samples often underwent a self-propagating high-temperature synthesis (SHS) reaction which led to catastrophic failure. This reaction and cracking behavior was more pronounced with increasing aluminum and ZrO2 contents of the powders. Subsequently, it was shown that the SHS reaction was actually two combustion phenomena: a thermal explosion reaction on the surface of the sample between aluminum and oxygen, which (in ZrO2-containing samples) triggered a self propagating aluminothermic reduction of ZrO2, forming Al2O3 and Al 3Zr. Therefore, methods for controlling the rate of the initial oxidation reaction were effective since both SHS reactions were prevented.; Despite the use of controlled firing, initial samples with increasing aluminum contents proved difficult to densify. It was found that in all RBAO samples (regardless of ZrO2 content), the reactively formed Al 2O3 underwent the γ to α-Al2O 3 transformation, which resulted in the development of a vermicular microstructure. In ZrO2-containing RBAO samples, this transformation was inhibited and occurred concurrently with the start of densification. In addition, the start of bulk shrinkage in these samples was delayed and the densification rates were decreased in comparison to samples without ZrO 2. This ultimately resulted in a decrease in the limiting density to which ZrO2-containing RBAO samples could be sintered. Surprisingly, in samples without ZrO2, increasing the aluminum content did not appear to have any effects upon the densification behavior of RBAO. In examining RBAO samples with similar aluminum contents but increasing ZrO2 contents, it became apparent that the grain growth inhibiting action of the ZrO2 prevented the complete removal of the vermicular microstructure. Thus, in ZrO2 containing RBAO samples with higher aluminum contents, where there was more reactively formed Al2O 3, the vermicular structure was even more difficult to eliminate.
Keywords/Search Tags:Aluminum, Contents, Reaction, RBAO, Zro, Effects
Related items