Font Size: a A A

Chemical modifications to vesicle forming diblock copolymers: Development of smart functional polymersome membranes

Posted on:2012-03-04Degree:Ph.DType:Thesis
University:University of PennsylvaniaCandidate:Katz, Joshua SFull Text:PDF
GTID:2461390011966521Subject:Chemistry
Abstract/Summary:
A major limitation to current treatment regimens for diseases is the inability to adequately deliver therapeutics. Many routes to encapsulation of these materials have been explored to improve biodistribution and better protect encapsulants from harsh biological conditions. One vehicle particularly attractive for encapsulation of such materials is the polymersome. While promising for translation to clinical use, there are still limitations in polymer chemistry and resulting polymersome behavior that will slow their adaptation. This thesis addresses several of these limitations.;The first major limitation to polymersomes is lack of control over their release rate. Release is generally by simple diffusion, leading to a burst. To address this burst, Aim 1 proposes a route to stabilizing polymersome membranes through their polymerization. PCL-PEG copolymers were terminally acrylated and the acrylates polymerized in the membrane following vesicle assembly. Polymerization enhanced mechanical robustness of the membranes and reduced diffusion of encapsulated contents. To ultimately trigger release, Aim 2 presents a novel route to synthesizing diblock copolymers, enabling insertion of a functional group at the blocks' junction. To facilitate triggering of release, we inserted UV-cleavable 2-nitrophenylalanine. Polymersomes assembled from this polymer collapse upon exposure to light and molecules release. Demonstrating further utility of this synthetic route, fluorescent vesicles were prepared using fluorescent lysine as the joining molecule. These vesicles labeled dendritic cells, providing a novel route to cell labeling and tracking.;The second limitation to vesicles promising for biomedical applications (made of PCL-PEG) is their solid membranes. Aim 3 demonstrates partial (or full) replacement of the PCL block with a caprolactone analogue, TOSUO, which is non-crystalline and assembles into soft, deformable vesicles. Increasing TOSUO content in the copolymer leads to softer vesicles but does not have a major affect on release rates or toxicity. Composite vesicles assembled from CL/TOSUO copolymers loaded with a zinc porphyrin undergo UV-induced deformation. Together, these modifications offer novel routes to the preparation of enhanced polymersomes that hold promise for the development of improved materials for the treatment of disease.
Keywords/Search Tags:Polymersome, Copolymers, Membranes, Route
Related items