| Sol-gel synthesized materials have many applications and in this thesis, different sol-gel films have been investigated as a scaffolding substrate for vesicle-fused lipid bilayers. Oxide, organic, and phosphate-based xerogels have been characterized using methods such as scanning electron microscopy (SEM), x-ray diffraction (XRD), atomic force micrsocopy (AFM) and contact angle goniometry to determine their viability as lipid membrane supports. Membranes containing 1,2-Dioleoyl-Glycero-3-Phosphocholine (DOPC) and two-phase lipid bilayer membranes containing DOPC and 1,2-Distearoyl-Glycero-3-Phosphocholine (DSPC) have been successfully assembled on these surfaces and characterized using fluorescence microscopy and fluorescence recovery after photobleaching (FRAP) to determine the lateral mobility and diffusion coefficients of these unique systems. It was found that xerogel films with rough surface topography lead to slower lipid diffusion due to obstruction of the membrane. Further work is needed to determine if more complexities, which are found in real cell membranes, can be accommodated by these new substrate chemistries. Additionally, sugar-based aerogel and xerogel materials were synthesized for catalytic applications. These unique materials were characterized with SEM and BET surface area and pore size analysis and it was found that sucrose aerogels, with high surface area and smaller pore diameters, are the most promising sugar-based material studied for further catalysis research. |