Font Size: a A A

Emittance measurements from a laser-driven electron injector

Posted on:2000-06-03Degree:Ph.DType:Thesis
University:The University of RochesterCandidate:Reis, David AFull Text:PDF
GTID:2460390014966789Subject:Physics
Abstract/Summary:
The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 Å, the LCLS requires an electron injector that can produce an electron beam with approximately I π mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch.; The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, S-band, high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements.; This thesis describes the initial characterization of the laser and electron beam at the GTF. A convolved measurement of the relative timing between the laser and the rf phase in the gun shows that the jitter is less than 2.5 ps rms. Emittance measurements of the electron beam at 35 MeV are reported as a function of the (Gaussian) pulse length and transverse profile of the laser as well as the charge of the electron beam at constant phase and gradient in both the gun and linac. At 1 nC the emittance was found to be ∼13 π mm-mrad for 5 ps, and 8 ps long laser pulses. At 0.5 nC the measured emittance decreased approximately 20% in the 5 ps case and 40% in the 8 ps case. These measurements are between 40–80% higher than simulations for similar experimental conditions. In addition, the thermal emittance of the electron beam was measured to be 0.15 π mm-mrad.
Keywords/Search Tags:Electron, Emittance, Laser, Gun, GTF, Measurements
Related items