Font Size: a A A

Fabrication and characterization of three-dimensional infrared photonic crystals

Posted on:2000-05-03Degree:Ph.DType:Thesis
University:The Pennsylvania State UniversityCandidate:Zavieh, LisaFull Text:PDF
GTID:2460390014464787Subject:Engineering
Abstract/Summary:
It has been predicted theoretically that photonic crystals can be used to control the propagation of light through dielectric media for wavelengths extending beyond the microwave to include the infrared and the visible. Fabrication of 3-D photonic crystals with a bandgap in the near infrared or visible would have application in the design of a new class of photonic devices that include optical mirrors, waveguides, and cavity resonators. Demonstrations of 3-D photonic crystals have been limited primarily to the microwave and infrared wavelength regimes because of the constraints imposed by the nanometer scale dimensions required for operation in the visible.; This thesis presents a novel method of fabricating a simple cubic photonic crystal which potentially can be tailored to operate at any wavelength. Fabrication was broken down into several processing steps, each of which was investigated independently. Design of Experiment (DOE) was used in a parametric study to optimize dry etching conditions by which GaAs/AlxGa1--x As multilayer structures were etched with anisotropic profile and rapid etch rate. Also, the etching properties of diffusion controlled wet lateral etching of buried AlxGa1--xAs layers in hydrofluoric acid solutions (HF) were investigated. Using the results obtained from the etching studies, both dry and wet etching techniques were employed to fabricate the simple-cubic photonic structure. Following fabrication, the photonic crystal was characterized at normal angles and oblique incidence using Fourier transform infrared spectroscopy (FTIR). The experimental results show strong correlation to theoretically predicted values. The simplicity of the process and positive results indicate that it may be possible to scale down the structure to obtain an photonic band lattice with a bandgap of 1.55 mum.
Keywords/Search Tags:Photonic, Infrared, Fabrication
Related items