Font Size: a A A

L'arbre de regression multivariable et les modeles lineaires generalises revisites: applications a l'etude de la diversite beta et a l'estimation de la biomasse d'arbres tropicaux

Posted on:2012-09-03Degree:Ph.DType:Thesis
University:Universite de Montreal (Canada)Candidate:Ouellette, Marie-HeleneFull Text:PDF
GTID:2460390011966170Subject:Biology
Abstract/Summary:PDF Full Text Request
In ecology, in ecosystem services studies for example, descriptive, explanatory and predictive modelling all have relevance in different situations. Precise circumstances may require one or the other type of modelling; it is important to choose the method properly to insure that the final model fits the study's goal.;In this thesis, we first explore the explanatory power of the multivariate regression tree (MRT). This modelling technique is based on a recursive bipartitionning algorithm. The tree is fully grown by successive bipartitions and then it is pruned by resampling in order to reveal the tree providing the best predictions. This asymmetric analysis of two tables produces homogeneous groups in terms of the response that are constrained by splitting levels in the values of some of the most important explanatory variables.;We show that to calculate the explanatory power of an MRT, an appropriate adjusted coefficient of determination must include an estimation of the degrees of freedom of the MRT model through an algorithm. This estimation of the population coefficient of determination is practically unbiased. Since MRT is based upon discontinuity premises whereas canonical redundancy analysis (RDA) models continuous linear gradients, the comparison of their explanatory powers enables one to distinguish between those two patterns of species distributions along the explanatory variables. The extensive use of RDA for the study of beta diversity motivated the comparison between its explanatory power and that of MRT.;In an explanatory perspective again, we define a new procedure called a cascade of multivariate regression trees (CMRT). This procedure provides the possibility of computing an MRT model where an order is imposed to nested explanatory hypotheses. CMRT provides a framework to study the exclusive effect of a main and a subordinate set of explanatory variables by calculating their explanatory powers. The interpretation of the final model is done as in nested MANOVA. New information may arise from this analysis about the relationship between the response and the explanatory variables, for example interaction effects between the two explanatory data sets that were not evidenced by the usual MRT model.;On the other hand, we study the predictive power of generalized linear models (GLM) to predict individual tropical tree biomass as a function of allometric shape variables. Particularly, we examine the capacity of gaussian and gamma error structures to provide the most precise predictions. We show that for a particular species, gamma error structure is superior in terms of predictive power. This study is part of a practical framework; it is meant to be used as a tool for managers who need to precisely estimate the amount of carbon recaptured by tropical tree plantations. Our conclusions could be integrated within a program of carbon emission reduction by land use changes.;Keywords Beta diversity ; carbon recapture ; generalized linear models ; multivariate regression tree ; tropical tree biomass estimation...
Keywords/Search Tags:Model, Explanatory, Regression, Estimation, Beta, Tree, MRT
PDF Full Text Request
Related items