Font Size: a A A

Case studies in quantitative biology: Biochemistry on a leash and a single-molecule Hershey-Chase experiment

Posted on:2012-06-17Degree:Ph.DType:Thesis
University:California Institute of TechnologyCandidate:Van Valen, DavidFull Text:PDF
GTID:2460390011965691Subject:Physics
Abstract/Summary:
The last 50 years of biological research has seen a marked increase in the amount of quantitative data that describes living systems. This wealth of data provides a unique opportunity to recast the pictorial level descriptions of biological processes in the language of mathematics, with the hope that such an undertaking will lead to deeper insights into the behavior of living systems. To achieve this end, we have undertaken three case studies in physical biology. In the first case study, we used statistical mechanics and polymer physics to construct a simple model that describes how flexible chains of amino acids, referred to as tethers, influence the information processing properties of signaling proteins. In the second case study, we studied the DNA ejection process of phage lambda in vitro. In particular, we used bulk and single-molecule methods to study the control parameters that govern the force and kinematics of the ejection process in vitro. In the last case study, we studied the DNA ejection process of phage lambda in vivo. We developed an assay that allows real-time monitoring of DNA ejection in vivo at the single-molecule level. We also developed a parallel system that allows the simultaneous visualization of both phage capsids and phage DNA at the single-cell level, constituting a true single-molecule Hershey-Chase experiment. The work described in this thesis outlines new tools, both in theory and experiment, that can be used to study biological systems as well as a paradigm that can be employed to mathematicize the cartoons of biology.
Keywords/Search Tags:Biology, Case, DNA ejection, Single-molecule, Biological
Related items