Font Size: a A A

A comprehensive study of the cool gas content of massive dark matter halos

Posted on:2012-08-11Degree:Ph.DType:Thesis
University:The University of ChicagoCandidate:Gauthier, Jean-ReneFull Text:PDF
GTID:2460390011963088Subject:Physics
Abstract/Summary:
This thesis is based on the results of an on-going investigation of the cool, T ∼ 104 K, gas present in massive dark matter halos traced by luminous red galaxies (LRGs) at z ∼ 0.5. It consists of three parts. The first part (Chapter 2) presents a series of measurements of the large-scale clustering of MgII lambdalambda 2796,2803 absorbers with respect to a population of LRGs. From the cross-correlation measurements between the absorbers and the galaxies, the mean bias of the dark matter halos in which the absorbers reside is derived. One finds a 1-sigma anti-correlation between mean halo bias and absorber strength W r(2796) that translates into a 1-sigma anti-correlation between mean galaxy mass and Wr(2796). The results indicate that a significant fraction of the MgII absorber population of W r(2796) = 1-1.5A are found in group-size dark matter halos of log Mh < 13.4, whereas absorbers of Wr(2796) > 1.5A are primarily seen in halos of log Mh < 12.7. In the second part of this thesis, a series of constraints on the covering fraction of cool gas are derived in Chapter 3. The results of an on-going spectroscopic follow-up of close LRG-Mg II absorber pairs are presented in Chapter 4. This spectroscopic sample consists of 70 photometrically selected LRGs at physical projected separations rho <∼ 400 kpc/h from a QSO sightline. The moderate-resolution spectra confirm a physical association between the cool gas revealed by the presence of MgII absorption features and the LRG halo in 15 cases. From a pair sample with no prior knowledge of the presence/absence of MgII absorbers, a covering fraction kappa = 0.13+0.05-0.06 is found for Wr(2796) > 0.3A and rho < 400 kpc/h. The third part of this thesis addresses the results of a stellar population synthesis analysis done on stacked spectra of MgII absorbing and non-absorbing LRG subsamples. The main finding of this analysis is that LRGs with or without associated MgII absorbers share similar star formation histories and are best described by old stellar population models (>∼ 1 Gyr). Younger stellar populations (<∼1 Gyr) fail to reproduce their spectra. The primarily old stellar populations in the LRGs indicate that recent starburst driven outflows are unlikely to explain the observed MgII absorbers at large distances from the LRGs. Finally, high-resolution spectra of seven MgII absorbers found in the vicinity of LRGs and associated deep, R-band images of the QSO-LRG fields are presented in Appendix A. These new data are crucial to study the kinematics of the gas and constrain its physical origin.
Keywords/Search Tags:Gas, Dark matter halos, Cool, Mgii absorbers, Results
Related items