Font Size: a A A

Lasing in strongly scattering dielectric microstructures

Posted on:2005-04-10Degree:Ph.DType:Thesis
University:University of Toronto (Canada)Candidate:Florescu, LuciaFull Text:PDF
GTID:2458390008996414Subject:Physics
Abstract/Summary:
In the first part of this thesis, a detailed analysis of lasing in random multiple-light-scattering media with gain is presented. Random laser emission is analyzed using a time-dependent diffusion model for light propagating in the medium containing active atoms. We demonstrate the effects of scatterers to narrow the emission spectral linewidth and to shorten the emitted pulse duration at a specific threshold pump intensity. This threshold pump intensity decreases with scatterer density and excitation spot diameter, in excellent agreement with experimental results. The coherence properties of the random laser are studied using a generalized master equation. The random laser medium is treated as a collection of low quality-factor cavities, coupled by random photon diffusion. Laser-like coherence, on average, is demonstrated above a specific pumping threshold. We demonstrate that with stronger scattering, the pumping threshold for the transition from chaotic to isotropic coherent light emission decreases and enhanced optical coherence for the emitted light is achieved above threshold.; The second part of this thesis presents a study of lasing in photonic crystals (PCs). The emission from an incoherently pumped atomic system in interaction with the electro-magnetic reservoir of a PC is analyzed using a set of generalized semiclassical Maxwell-Bloch equations. We demonstrate that the photonic band edge facilitates the enhancement of stimulated emission and the reduction of internal losses, leading to an important lowering of the laser threshold. In addition, an increase of the laser output at a photonic band edge is demonstrated. We next develop a detailed quantum theory of a coherently pumped two-level atom in a photonic band gap material, coupled to both a multi-mode wave-guide channel and a high-quality micro-cavity embedded within the PC. The cavity field characteristics are highly distinct from that of a corresponding high-Q cavity in ordinary vacuum. We demonstrate enhanced, inversionless, and nearly coherent light generation when the photon density of states (DOS) jump between the Mollow spectral components of atomic resonance fluorescence is large. In the case of a vanishing photon DOS on the lower Mollow sideband and no dipolar dephasing, the emitted photon statistics is Poissonian and the cavity field exhibits quadrature coherence.
Keywords/Search Tags:Lasing, Random, Photon, Light, Coherence
Related items