Font Size: a A A

Equation-free analysis for agent-based computation

Posted on:2013-12-27Degree:Ph.DType:Thesis
University:Princeton UniversityCandidate:Liu, PingFull Text:PDF
GTID:2458390008970747Subject:Applied Mathematics
Abstract/Summary:
Due to the advances in computing technology, agent-based modeling (ABM) has become a powerful tool in addressing a wide range of problems. However, there is a challenge which modelers often encounter: the effective nonlinear and stochastic nature of individual dynamics and the inherent complexity of microscopic descriptions; closures that allow us to write macroscopic evolution equations for the coarse-grained dynamics are usually not available.;As an attempt to overcome this difficulty and to enable system-level analysis of agent-based simulations, the Equation-Free (EF) approach is explored in this Thesis in studying two different agent-based models. The first agent-based model describes the dynamic behavior of many interacting investors in a financial market in the presence of mimesis. Three aspects of the EF framework are successfully applied to this model: (1) in the coarse bifurcation analysis, using appropriately initialized short runs of the microscopic agent-based simulations, bifurcation diagrams of the identified coarse variables are constructed, and the stability of its multiple solution branches are determined; (2) in the coarse rare event analysis, an effective Fokker-Planck (FP) equation is constructed on a coarse-grained one dimensional reaction coordinate. The mean escape time of the associated rare event computed using this effective FP shows good agreement with the results from direct agent-based simulations, but requires only 3.2% of the computational time; (3) utilizing the smoothness of coarse variables, a patch-dynamics scheme is successfully designed which allows expensive agent-based simulations to be performed in small "patches" (2%) of the full spatio-temporal domain, while giving comparable system-level solutions.;The second agent-based model describes the dynamic behavior of a group of swarming animals. Using a recently developed data-mining technique—Diffusion Maps (DMAP)—interesting coarse level features about the swarming dynamics were successfully captured. The first two dominant DMAP coarse variables characterize the "up-down" and "left-right" directions of collective group motion respectively. Based on these two DMAP coarse variables, a reduced stochastic differential equation (SDE) model is successfully constructed using the EF framework. Using the reduced SDE model, the associated coarse rare events are efficiently studied, circumventing expensive long-term agent-based simulations.
Keywords/Search Tags:Agent-based, Model, Coarse, Using
Related items