Font Size: a A A

Disturbance Decoupling Problem for Discrete-Event Systems with Applications

Posted on:2017-06-23Degree:M.SType:Thesis
University:Southern Illinois University at EdwardsvilleCandidate:Oke, AdetolaFull Text:PDF
GTID:2458390008968813Subject:Electrical engineering
Abstract/Summary:
This thesis presents the new investigations on the disturbance decoupling problem (DDP) for the geometric control of max-plus linear systems, which are used to model discrete event systems such as transportation networks, queuing systems, and communication networks. The classical DDP concept in the geometric control theory means that the controlled outputs will not be changed by any disturbances. In practical manufacturing systems, solving for the DDP would require further delays on the output parts than the existing delays caused by the system breakdown, which will be less practical in real applications. The new proposed modified disturbance decoupling problem (MDDP) in this thesis ensures that the controlled output signals will not be delayed more than the existing delays caused by the disturbances in order to achieve the just-in-time optimal control. Furthermore, this thesis presents the integration of output feedback and open-loop control strategies to solve for the MDDP, as well as for the DDP. The main results of this thesis are illustrated by using timed event graph models of a high throughput screening system in drug discovery and a railway transport network.
Keywords/Search Tags:Disturbance decoupling problem, Systems, DDP, Thesis
Related items