Font Size: a A A

CP-nets: From theory to practice

Posted on:2017-06-25Degree:Ph.DType:Thesis
University:University of KentuckyCandidate:Allen, Thomas EFull Text:PDF
GTID:2458390008490841Subject:Artificial Intelligence
Abstract/Summary:PDF Full Text Request
Conditional preference networks (CP-nets) exploit the power of ceteris paribus rules to represent preferences over combinatorial decision domains compactly. CP-nets have much appeal. However, their study has not yet advanced sufficiently for their widespread use in real-world applications. Known algorithms for deciding dominance---whether one outcome is better than another with respect to a CP-net---require exponential time. Data for CP-nets are difficult to obtain: human subjects data over combinatorial domains are not readily available, and earlier work on random generation is also problematic. Also, much of the research on CP-nets makes strong, often unrealistic assumptions, such as that decision variables must be binary or that only strict preferences are permitted. In this thesis, I address such limitations to make CP-nets more useful. I show how: to generate CP-nets uniformly randomly; to limit search depth in dominance testing given expectations about sets of CP-nets; and to use local search for learning restricted classes of CP-nets from choice data.;Keywords: artificial intelligence, combinatorial preferences, decision making, applications of local search, conditional preference networks.
Keywords/Search Tags:Cp-nets, Preferences, Combinatorial, Decision
PDF Full Text Request
Related items