Font Size: a A A

A monolithically integrated power JFET and Junction Barrier Schottky diode in 4H Silicon Carbide

Posted on:2013-07-31Degree:Ph.DType:Thesis
University:Rutgers The State University of New Jersey - New BrunswickCandidate:Radhakrishnan, RahulFull Text:PDF
GTID:2458390008479707Subject:Engineering
Abstract/Summary:
Efficiency of power management circuits depends significantly on their constituent switches and rectifiers. The demands of technology are increasingly running up against the intrinsic properties of Si based power devices. 4H-Silicon Carbide (SiC) has superior properties that make it attractive for high power applications. SiC rectifiers are already a competitive choice and SiC switches have also been commercialized recently. Junction Barrier Schottky (JBS) diodes, which combine the advantages of PN and Schottky, have higher Figure of Merit (FOM) as rectifiers. Among switches, a robust and mature process has been developed for Silicon Carbide Vertical Junction Field Effect Transistors (VJFETs), which currently gives it the highest unipolar FOM.;Switches are frequently combined with anti-parallel diodes in power circuits. This thesis describes the development of a SiC-based monolithically integrated power switch and diode. Monolithic integration increases reliability and efficiency, and reduces cost. Because of their superior properties and similarities in fabrication, we chose the SiC VJFET and JBS diode as the switch and rectifier. Detailed design, fabrication and characterization of the integrated switch to block above 800 V and conduct current beyond 100 A/cm2 is explained. In this process, the first physics-based 2-D compact model is developed for reverse leakage in a JBS diode as a function of design parameters. Since the gate-channel junctions of SiC VJFETs cannot be assumed to be abrupt, an existing analytical model for Si VJFETs is extended to account for graded gate-channel junctions. Using these analytical models, design rules are developed for the VJFET and JBS diode. Finite element simulations are used to find the best anode layout of the JBS diode and optimize electric field termination in the integrated device to ensure their capability to operate at high voltage. Finally, a spin-on glass based process is developed for filling the gate trenches of the VJFET to improve long-term robustness in extreme environments.;The integrated power switch developed in this thesis points to the attractions of monolithic integration in SiC power circuits. Analytical compact design equations derived here will facilitate faster and easier design of switches and rectifiers for desired circuit operation.
Keywords/Search Tags:Power, Switches, JBS diode, Rectifiers, Junction, Schottky
Related items