Font Size: a A A

Enhanced PVDF film for multi energy harvesting

Posted on:2014-11-21Degree:M.SType:Thesis
University:The University of MississippiCandidate:Karunarathna, Ranmunige NadeekaFull Text:PDF
GTID:2458390005490525Subject:Engineering
Abstract/Summary:
PVDF is a very important piezoelectric polymer material which has a promising range of applications in a variety of fields such as acoustic sensors and transducers, electrical switches, medical instrumentation, artificial sensitive skin in robotics, automotive detection on roads, nondestructive testing, structural health monitoring and as a biocampatible material. In this research cantilever based multi energy harvester was developed to maximize the power output of PVDF sensor. Nano mixture containing ferrofluid (FF) and ZnO nano particles were used to enhance the piezoelectric output of the sensor. The samples were tested under different energy conditions to observe the behavior of nano coated PVDF film under multi energy conditions. Composition of the ZnO and FF nano particles were changed by weight, in order to achieve the optimal composition of the nano mixture. Light energy, vibration energy, combined effect of light and vibration energy, and magnetic effect were used to explore the behavior of the sensor. The sensor with 60% ZnO and 40% FF achieved a maximum power output of 10.7 microwatts when it is under the combined effect of light and vibration energy. Which is nearly 16 times more power output than PVDF sensor. When the magnetic effect is considered the sensor with 100% FF showed the highest power output of 11.2 microwatts which is nearly 17 times more power output than pure PVDF. The effective piezoelctric volume of the sensor was 0.017 cm3. In order to explore the effect of magnetic flux, cone patterns were created on the sensor by means of a external magnetic field. Stability of the cones generated on the sensor played a major role in generated power output.
Keywords/Search Tags:PVDF, Power output, Energy, Sensor, Magnetic
Related items