Font Size: a A A

Matrix-derived microcarriers for adipose tissue engineering

Posted on:2012-11-21Degree:M.A.ScType:Thesis
University:Queen's University (Canada)Candidate:Turner, Allison Eugenia BogartFull Text:PDF
GTID:2454390008999972Subject:Engineering
Abstract/Summary:
In vivo, adipose tissue demonstrates only a limited capacity for self-repair, and the long-term treatment of subcutaneous defects remains an unresolved clinical problem. With the goal of regenerating healthy tissues, many tissue-engineering strategies have pointed to the potential of implementing three-dimensional (3-D), cell-seeded scaffolds for soft tissue augmentation and wound healing. In particular, microcarriers have shown promise as both cell expansion substrates and injectable cell-delivery vehicles for these applications. However, limited research has investigated the engineering of tissue-specific microcarriers, designed to closely mimic the native extracellular matrix (ECM) composition. In this work, methods were developed to fabricate microcarriers from decellularized adipose tissue (DAT) via non-cytotoxic protocols. Characterization by microscopy confirmed the efficacy of the fabrication protocols in producing stable beads, as well as the production of a microporous surface topography. The mean bead diameter was 934 +/- 51 mum, while the porosity was measured to be 29 +/- 4 % using liquid displacement. Stability and swelling behavior over 4 weeks indicated that the DAT-based microcarriers were effectively stabilized with the non-cytotoxic photochemical crosslinking agent rose bengal, with only low levels of protein release measured within a simulated physiological environment. In cell-based studies, the DAT-based microcarriers successfully supported the proliferation and adipogenic differentiation of human adipose-derived stem cells (hASCs) in a dynamic spinner flask system, with a more favorable response observed in terms of adhesion, proliferation, and adipogenesis on the DAT-based microcarriers relative to gelatin control beads. More specifically, dynamically-cultured hASCs on DAT-based microcarriers demonstrated greater lipid loading, as well as higher glycerol-3-phosphate dehydrogenase (GPDH) activity, a key enzyme involved in triacylglycerol biosynthesis, at 7 days and 14 days in culture in an inductive medium. Overall, the results indicated that the DAT-based microcarriers provided a uniquely supportive environment for adipogenesis. Established microcarrier sterility and injectability further support the broad potential of these tissue-specific microcarriers as a novel, adipogenic, clinically-translatable strategy for soft tissue engineering.
Keywords/Search Tags:Microcarriers, Tissue
Related items