Font Size: a A A

Implication de la voie ERK3/4-MK5 dans la phase G2/M du cycle cellulaire

Posted on:2012-07-24Degree:Ph.DType:Thesis
University:Universite de Montreal (Canada)Candidate:Tanguay, Pierre-LucFull Text:PDF
GTID:2454390008499061Subject:Biology
Abstract/Summary:
The process of cell division is largely influenced by extracellular and intracellular cues. Many enzymatic pathways refined during evolution propagate the information generated by those cues. MAP kinase modules are extremely important within the cells. Human genome encodes 14 MAP kinases genes grouped into seven distinct pathways involved in the control of many cellular processes. ERK3/4 are kinases homologous to ERK1/2. Very little is known about their regulation and molecular functions. These MAP kinases are described as being atypical based on their unique structural characteristics and mode of regulation. Our laboratory was the first to demonstrate that the activity of ERK3 is mainly regulated by the ubiquitin-proteasome system in proliferating cells. In addition, several lines of evidence suggest a role for ERK3 in the control of cell differentiation and proliferation.;The first study presented herein documents the regulation of ERK3 during the cell cycle. We observed that ERK3 is hyperphosphorylated and accumulated specifically during mitosis. Mass spectrometry analyses led to the identification of four phosphorylation sites located in the C-terminal domain. We demonstrate that mitotic kinase CDK1/cyclin B phosphorylates these sites which are dephosphorylated by Cdc14A and Cdc14B phosphatases. Finally, we show that mitotic phosphorylation of ERK3 controls its stability.;At the beginning of my Ph.D. training, the kinase MK5 was the first identified binding partner and substrate of ERK3. MK5 is implicated in very few cellular functions. Data suggest that under certain conditions it modulates cell cycle progression. For example, MK5 was recently identified as a tumor suppressor gene essential for ras-induced senescence. In the second study of this thesis, we describe a novel function of MK5 in cell cycle progression. Gain and loss of function experiments demonstrate that MK5 delays G2/M transition following replicative stress. This function depends on its catalytic activity to indirectly regulates CDK1/cyclin B. Finally, we identified Cdc25A as a good in vitro substrate for MK5. Interestingly, Cdc25A expression inhibits MK5-induced delay of entry into mitosis.;In conclusion, our results described a novel mechanism of regulation of ERK3 during mitosis and a novel function of MK5 in the control of G2/M transition after replicative stress. These data demonstrate for the first time the relation between these kinases and the G2/M transition. Our work should contribute to a better understanding of the roles of ERK3/4-MK5 kinases.;Keywords : Phosphorylation, MAP kinases, Cell cycle, Mitosis, Cyclin-dependant kinases, Stability, Phosphatases, Replicative arrest, ERK3, MK5...
Keywords/Search Tags:MK5, ERK3, Cell, Cycle, MAP kinases, G2/M, Mitosis
Related items