Font Size: a A A

Bioglass 45S5 transformation and molding material in the processing of biodegradable poly-DL-lactide scaffolds for bone tissue engineering

Posted on:2013-04-27Degree:M.EngType:Thesis
University:McGill University (Canada)Candidate:Abdollahi, SaraFull Text:PDF
GTID:2454390008486177Subject:Engineering
Abstract/Summary:
When bone is damaged, a scaffold can temporarily replace it in the site of injury and incite bone tissue to repair itself. A biodegradable scaffold resorbs into the body, generating non-toxic degradation products as new tissue reforms; a bioactive scaffold encourages the surrounding tissue to regenerate. In the present study, we make composite biodegradable and bioactive scaffolds using poly-DL-lactide (PDLLA), a biodegradable polymer, and incorporate Bioglass 45S5 (BG) to stimulate scaffold bioactivity. BG has an interesting trait when immersed in body fluid, a layer of hydroxycarbonate apatite, similar to the inorganic component of bone, forms on its surface. It is of utmost importance to understand the fate of BG throughout the scaffold's processing in order to assess the scaffold's bioactivity.;In this study, the established different stages of BG reactivity have been verified by monitoring pH during BG dissolution experiments and by conducting an elemental analysis using inductively coupled plasma optical emission spectroscopy (ICP-OES). The composite scaffolds are synthesized by the solvent casting and particulate leaching technique and their morphology assessed by scanning electron microscopy (SEM). To understand the transformations occurred in BG during scaffold synthesis, BG as received, as well BG treated in acetone and water (the fluids involved in scaffold processing) are characterized by Fourier transform infrared (FTIR), and x-ray photoelectron spectroscopy (XPS). The results are then compared with BG extracted from scaffolds after processing. BG has been determined to start reacting during the scaffold processing. In addition, its reactivity is influenced by BG particle size. The study suggests that the presence of the polymer provides a reactive environment for BG due to pH effects.;Teflon molds in scaffold fabrication are inert and biocompatibile, but their stiffness presents a challenge during de-molding. Silicone-based and polyurethane molds are attractive because they are flexible. However, there is a possibility that silicone leaches either from the material itself or the agents used to enhance their performance onto the scaffold. The second study in this thesis focuses on different types of such flexible substrates (Sil940, polyurethane, polyether, polydimethylsiloxane). The presence of Si in PDLLA films prepared on each material is inspected using XPS. Films made on all four materials are found to contain Si, indicative of the dissolution of part of the substrate in the film. However, silicon in the Si-containing catalysts used in the synthesis of polyethers is not transferred to samples, when the polyether substrate is plasma coated.
Keywords/Search Tags:Scaffold, Tissue, Processing, Biodegradable, Material
Related items