Font Size: a A A

The cost-effectiveness of Devils Lake flood decision-making: An economic case study of a climate driven Wicked Problem

Posted on:2013-08-30Degree:M.SType:Thesis
University:The University of North DakotaCandidate:Barta, David AFull Text:PDF
GTID:2452390008969446Subject:Geodesy
Abstract/Summary:
The Devils Lake flood is the longest, most expensive terminal lake flood in the history of the United States. In 1993, the Lake had a surface elevation of 433.9 m (1423.7 ft.) above mean sea level. Since that time it has risen 9.3 m (30.6 ft.), inundated 58,275 ha (144,000 acres) of land, and caused an estimated ;Although CIP was initially predicted to have a positive cost-benefit ratio, statistical data shows that the 18-year cost of CIP is greater than the value of all the property it was constructed to protect. In order to assess how policymakers and domain experts might have determined a more economically efficient solution, this thesis combines the economic concepts of expected and present value into an expected present value (EPV) model within a Wicked Problems framework. This model incorporates the lake level probability and the discount rate as variables, and produces the EPV of all future CIP costs from any point in time over the current course of flooding (1994-2011). Because the discount rate and lake level probability are unknown, the EPV of CIP was simulated under a range of potential discount rates and likely lake level probabilities and compared against the estimated cost of a one-time relocation and buyout of the adjacent Devils Lake communities. The model assumes that the threshold discount rate at which the relocation/buyout alternatives had an equivalent monetary value as CIP reflected the preference of decision-makers for CIP over other alternatives. The results suggested that policymakers preferred short-term solutions with smaller continuing costs over long-term solutions with large one-time costs, despite the fact that the long-term solution was ultimately cheaper in the long-run. Based on an examination of the relevant literature, governmental analysis, and anecdotal evidence, the analysis suggested that flood mitigation decisions were driven by a preference for the present over the future, the possible underestimation of long-term CIP costs, and the human tendency to place a lower priority on the elimination of extreme risks than their statistical probability implies is appropriate. When viewed as Wicked Problem, the results and theory support the conclusion that an 'iterative risk-management framework', as described by the National Research Council, would have likely resulted in a more effective, resilient, and sustainable long-term flood mitigation response.
Keywords/Search Tags:Flood, Lake, CIP, Wicked, Long-term
Related items