Font Size: a A A

Photochemistry of Inorganic Nanomaterials for Solar Energy Conversion

Posted on:2017-11-05Degree:Ph.DType:Thesis
University:University of California, DavisCandidate:Shelton, Timothy LFull Text:PDF
GTID:2452390008488575Subject:Alternative Energy
Abstract/Summary:
As our world's population is constantly growing, so also is the need to power the growth and spread of technology. The conversion of abundant solar energy into useable sources of fuel is an area of significant and vital research. Photocatalytic water splitting via suspended nanomaterials or photoelectrochemical cells has great promise for this purpose. This research focuses on the preparation and analysis of nanomaterials utilizing simple methods and earth abundant chemicals that will lead to cost-competitive methods to convert solar energy into an easily stored and transported fuel source. Specifically, our research seeks to better understand the methods of charge generation and separation in nanomaterial films and to quantify the limits of activity in suspended photocatalysts.;Chapter 2 introduces a study on the nature of photovoltage generation in well-ordered hematite films under zero applied bias. The thickness of Fe 2O3 nanorod films is varied by a simple hydrothermal synthesis and confirmed with TEM and profilometry measurements. Surface photovoltage spectroscopy (SPS) in the presence of air, water, nitrogen, oxygen, and under vacuum confirms photovoltages are associated with oxidation of surface water and hydroxyl groups and with reversible surface hole trapping on the 1 minute time scale and de-trapping on the 1 hour time scale with a maximum photovoltage of -130 mW under 2.0 eV -- 4.5 eV illumination. Sacrificial donors (KI, H2O2, KOH) increase the voltage to -240 and -400 mW, due to improved hole transfer. The photovoltage is quenched with the addition of co-catalysts CoOx and Co-Pi, possibly due to the removal of surface states and enhanced e/h recombination.;Chapter 3 outlines a methodical exploration of the limits of water oxidation from illuminated beta-FeO(OH) suspensions. Well-defined akaganeite nanocrystals are able to produce oxygen gas from aqueous solutions in the presence of an appropriate electron acceptor. Optimal conditions were achieved by systematically varying the amount of catalyst, concentration of the electron acceptor, pH of the solution, and light intensity. A decrease in activity is shown to be the result of particle agglomeration after roughly 5 hours of illumination. A maximum O2 evolution rate of 35.2 mumol O 2 h-1 is observed from an optimized system, with a QE of 0.19%, and TON of 2.58 based on total beta-FeO(OH).;Chapter 4 continues to understand charge separation and transport in CdS nanorods. These nanomaterials are capable of catalytic proton reduction under visible illumination, but suffer from photo-corrosion resulting in decreased H2 production. SPS measurements show a maximum photovoltage of -230 mV at 2.75 eV and the charge separation is largely reversible. Coating the rods with graphitic carbon nitride (g-C3N4) creates a hole accepting protective layer than prevents oxidative loss of photo-activity. By adding platinum salts, additional photovoltage could be extracted through field induced charge migration from excited sub gap defect states and trap sites. The addition of a sacrificial reagent would either decrease or increase the photovoltage (depending on the reagent used) by creating additional bias in the films or charge recombination pathways. Finally, it was shown that varying the substrate has an effect on the platinum/substrate polarized charge injection.;Chapter 5 Surface photovoltage is used to show for the first time the charge separation properties of Sn2TiO4, an n-type photocatalyst, a series of cuprous niobium oxides doped with tantalum (CuNb1-yTa yOx), and a Cu (I) tantalum oxide Cu5Ta11 O3.
Keywords/Search Tags:Solar energy, Nanomaterials, Photovoltage
Related items