Font Size: a A A

Nonlinear Aeroelastic Behavior of Tail / Rudder Systems with Freeplay and Actuator Failure

Posted on:2014-12-21Degree:Master'Type:Thesis
University:University of WashingtonCandidate:Noble, MatthewFull Text:PDF
GTID:2452390005983901Subject:Engineering
Abstract/Summary:
This thesis discusses the development of numerical simulations implemented in MATLAB and of an experimental tail/rudder model for the investigation of the effects of non-linearities on control surface flutter of a three-degree of freedom typical section airfoil. Non-linearities investigated include a structural non-linearity in the form of freeplay about the control surface hinge line as well as velocity-squared damping, simulating a failed actuator. The mathematical modeling, design, and testing of a prototype velocity-squared damper is also presented for use in the numerical simulations. In both cases, the describing function method has been used to predict the amplitudes of possible Limit-Cycle Oscillations (LCOs) in the rudder DOF. Response amplitudes and frequencies in the frequency domain, are shown to agree extremely well with results obtained in the time-domain via direct numerical integration of the equations of motion. Both stable and unstable limit-cycle behavior has been predicted, resulting in a detailed set of predictions for the response of the system below the flutter boundary.
Keywords/Search Tags:Numerical simulations
Related items