Font Size: a A A

Wind turbine design using a free-wake vortex method with winglet application

Posted on:2014-12-10Degree:Ph.DType:Thesis
University:The Pennsylvania State UniversityCandidate:Maniaci, DavidFull Text:PDF
GTID:2452390005488662Subject:Engineering
Abstract/Summary:
Wind turbine blades are traditionally designed with blade element momentum theory (BEMT). This method is incapable of accurately analyzing non-conventional or non-planar blade planforms. Modern wind turbine blade design thus requires non-standard modeling that can effectively analyze the effects of a non-planar blade, such as a blade with a winglet. The free-wake, distributed vorticity element (FW-DVE) method meets these analysis goals. Previous work applied the FW-DVE method to wind turbines, but did not include the influence of profile forces and did not include any design applications. The present research focused on developing the FW-DVE method into a design tool for wind turbine design applications and on the validation of this tool.;In the research presented in this thesis, the FW-DVE method was modified to include the effect of airfoil profile drag and to account for the effects of stall and a non-linear lift-curve. A design tool was created to aid in using the WindDVE analysis code for trade space exploration. The method was used to analyze and design a winglet for a small-scale wind turbine, which was tested in a wind tunnel at the University of Waterloo where it exhibited a 9% increase in the maximum coefficient of power of the rotor. The performance results from this test have been used to validate the FW-DVE method for wind turbine design, along with an analysis of the National Renewable Energy Laboratory's Unsteady Aerodynamics Experiment Phase VI wind turbine.
Keywords/Search Tags:Wind turbine, Method, Winglet
Related items