Font Size: a A A

Design and utilization of a top hat analyzer for Hall thruster plume diagnostics

Posted on:2007-10-08Degree:Ph.DType:Thesis
University:University of MichiganCandidate:Victor, Allen LeorajFull Text:PDF
GTID:2452390005486531Subject:Engineering
Abstract/Summary:
Electric propulsion offers new capabilities for ambitious space missions of the future. However, coating, uneven heating, and the charging of spacecraft components have impeded the integration of Hall thrusters for space missions and encouraged plume diagnostics of the thruster plasma environment. Plume diagnostics are also important for the inference of thruster performance through plume properties downstream of the engine.; While the top hat analyzer has been available for low-density space plasma diagnostics for over twenty years, the use of this instrument for plasma thruster plume diagnostics has been nonexistent. This thesis describes the development of a new diagnostics tool, the Top Hat Electric Propulsion Plume Analyzer (TOPAZ), which provides unprecedented insight into the physical mechanisms that govern the performance of Hall thrusters. Novel measurements conducted by TOPAZ on the BHT-600 Hall thruster cluster yielded interesting and undocumented phenomena in the far-field plume.; SIMION, a commercial ion optics program, was used to design TOPAZ and estimate the energy and angular resolutions as well as the instrument's sensitivity and plate-voltage relationships. TOPAZ was experimentally characterized through an ion beam facility operating on air, xenon, and krypton gases.; Measurements on the BHT-600 cluster indicated lower-energy ions emanated from positions closer to the cathode while higher-energy ions were measured from along the discharge channel centerlines. Low-energy ions were also measured from behind the cathodes only during cluster operation. Charge-exchange and ionization outside the primary acceleration region are believed to be the cause of the variance in the energy distributions. Cross pollination of the cathode plume with the opposite thruster is argued to create low-energy ions which emanate from behind the cathode.; Time-of-flight measurements through TOPAZ allowed for charge-state and species fraction discriminations as functions of emanation points from the cluster. Multiply-charged ions (∼5%) were measured from regions near the discharge channels and only for plume angles less than 20 degrees. Calculations of the axial and radial velocity distributions for the first three charge-states downstream of the cluster centerline revealed a symmetric triple-peak structure in the radial velocity distributions and a double-peak profile in the axial velocity distribution of the first charge-state of xenon.
Keywords/Search Tags:Plume, Top hat, Ions, Thruster, Hall, TOPAZ, Analyzer
Related items