Font Size: a A A

Synthesis and characterization of catalysts for the selective transformation of biomass-derived materials

Posted on:2012-01-13Degree:Ph.DType:Thesis
University:The University of MaineCandidate:Ghampson, Isaac TyroneFull Text:PDF
GTID:2451390008997596Subject:Engineering
Abstract/Summary:
The experimental work in this thesis focuses on generating catalysts for two intermediate processes related to the thermal conversion of lignocellulosic biomass: the synthesis and characterization of mesoporous silica supported cobalt catalysts for the Fischer-Tropsch reaction, and an exploration of the reactivity of bulk and supported molybdenum-based nitride catalysts for the hydrodeoxygenation (HDO) of guaiacol, a lignin model compound.;The first section of the work details the synthesis of a series of silica-supported cobalt Fischer-Tropsch catalysts with pore diameters ranging from 2-23 nm. Detailed X-ray diffraction measurements were used to determine the composition and particle diameters of the metal fraction, analyzed as a three-phase system containing Cofcc, Cohcp and CoO particles. Catalyst properties were determined at three stages in catalyst history: (1) after the initial calcination step to thermally decompose the catalyst precursor into Co3O4, (2) after the hydrogen reduction step to activate the catalyst to Co and (3) after the FT reaction. From the study, it was observed that larger pore diameters supported higher turnover frequency; smaller pore diameters yielded larger mole fraction of CoO; XRD on post-reduction and post-FTS catalyst samples indicated significant changes in dispersivity after reduction.;In the next section, the catalytic behaviors of unsupported, activated carbon-, alumina-, and SBA-15 mesoporous silica-supported molybdenum nitride catalysts were evaluated for the hydrodeoxygenation of guaiacol (2-methoxy phenol) at 300°C and 5 MPa. The nitride catalysts were prepared by thermal decomposition of bulk and supported ammonium heptamolybdate to form MoO 3 followed by nitridation in either flowing ammonia or a nitrogen/hydrogen mixture. The catalytic properties were strongly affected by the nitriding and purging treatment as well as the physical and chemical properties of support. The overall reaction was influenced by the crystalline phase present in the catalyst, dispersion of molybdenum nitride/oxynitride, and the porosity of the support. The hydrodeoxygenation of guaiacol followed two proposed reaction pathways: demethylation (DME) of guaiacol to form catechol, followed by dehydroxylation to form phenol; or a direct demethoxylation (DMO) to form phenol. The selectivity of the reaction was expressed in terms of the phenol/catechol ratio. Phenol was the predominant product for all the catalysts studied, except for the alumina-supported catalysts (an effect of the alumina support). The results from this thesis are encouraging for the application of Mo nitride based catalysts for hydrodeoxygenation of whole pyrolysis oil.
Keywords/Search Tags:Catalysts, Form, Synthesis, Nitride, Hydrodeoxygenation
Related items