Font Size: a A A

The Electrochemical Assembly of Semiconducting Organic-Inorganic Lamellar Domains for Photovoltaics

Posted on:2013-10-16Degree:Ph.DType:Thesis
University:Northwestern UniversityCandidate:Herman, David JohnFull Text:PDF
GTID:2451390008981946Subject:Chemistry
Abstract/Summary:
This dissertation investigates the one-step electrodeposition of alternating nanoscale domains of n-type ZnO and p-type organic molecules for photovoltaics. In such hybrid photovoltaic systems, a nanoscale lamellar periodicity of 5-10 nm between electron donor and electron acceptor materials is ideal for efficient exciton separation. In addition, achieving uniform density and substrate-wide alignment of the hybrid lamellar structures with orientation perpendicular to substrate surfaces is important in providing direct pathways for charge carriers to the electrodes. To this end, it is first reported how to control the assembly of the pyrene-based surfactant 1-pyrenebutyric acid (PyBA) with zinc hydroxide (a precursor to the semiconductor ZnO), resulting in a nanoscale lamellar structure with a periodicity of 3.2 nm. By exploring solution chemistry parameters, the surfactant concentration and solvent composition are shown to have the greatest effect on the morphology of lamellar growth. By studying the early nucleation and growth on indium tin oxide (ITO) substrates with 2D grazing incidence small angle X-ray scattering, it is revealed that the lamellae preferentially nucleate parallel to the hydrophilic ITO surface. It is hypothesized that the conductive and more hydrophobic poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) surface increases the affinity for the pyrene functions to the surface, and therefore the oriented growth of the lamellae changes from parallel to perpendicular with respect to the substrate surface. The second part of this thesis investigates the effects of conjugated surfactant design in directing the growth of hybrid lamellar structures by incorporating either a pyrene or terthiophene moiety and varying overall molecular design. It is found that high aspect ratio and amphiphilic surfactants possessing a flexible alkyl spacer between the carboxylic acid and conjugated moiety consistently allow for the controlled and directed assembly of lamellae with orientations either parallel (on ITO) or perpendicular (on PEDOT:PSS) to the substrate. For surfactants without the spacer or with bolaamphiphilic design, the decrease in entropic freedom either during surface assembly or during lamellae growth is believed to result in uncontrolled orientations and heterogeneous morphologies. In all cases, the lack or low-density of solution micelles at the deposition conditions implied that the growth and orientation of lamellar structures is mediated by surfactant-substrate interactions and assemblies. Finally, the controlled deposition of quinquethiophene surfactant and ZnO lamellae with a periodicity of 2.5 nm was achieved. By optimizing the device architecture with an inverted design, the photovoltaic efficiency improved from 0.0008% to 0.01%. Converting the Zn(OH)2 to ZnO by annealing at 150 °C and pulsing the electrodeposition potential led to a three-fold improvement in efficiency to 0.035%. External quantum efficiency measurements indicate that pulsed depositions lead to better π-π stacking of the thiophenes inside the lamellar galleries. Although the seemingly ideal assembly between n- and p-type materials is approached and photovoltaic devices are demonstrated, the efficiencies remain limited due to high charge carrier resistances from the excess active layer thickness, which was required to prevent electrode shorting during device fabrication.
Keywords/Search Tags:Lamellar, Photovoltaic, Assembly, Zno
Related items