Font Size: a A A

Low temperature processable binderless silver inks for flexible electronics

Posted on:2014-12-07Degree:M.SType:Thesis
University:University of Massachusetts LowellCandidate:Nayak, ArunFull Text:PDF
GTID:2451390008453578Subject:Engineering
Abstract/Summary:
A new class of screen-printable conductive silver inks that can be transformed into conductive traces at temperatures below 120°C is presented. The low transformation temperature required for processing these inks renders them suitable for printing on flexible substrates, such as polyester films to form conductive patterns/devices. The ink composition includes silver flakes (average particle size of 0.45 μm-8 μm), an organometallic silver salt, a free radical initiator and a novel dispersant. This binder-free silver ink can be thermally converted into pure metallic patterns containing no binder or any other organic moieties. The initiator catalyzes the decomposition of organometallic silver compounds to produce reactive silver at a relatively lower temperature. The silver thus generated chemically welds the silver flakes.;Conductive silver traces with conductivities approaching within two orders of magnitude of elemental silver have been fabricated using these inks. In addition, a novel dispersant comprising amine-carbamate based gels was also developed. These gels act as suitable transport agents for the ink and completely decompose and vaporize during the thermal transformation process.;The ink was formulated after careful optimization of the particle sizes of the silver flakes, weight percentages of the silver organometallic salt, silver flakes and amine carbamate gel and the relative molar ratio of the silver salt to the catalyst. These factors influence the conductivity and the mechanical integrity of the printed patterns fabricated from the ink. The inks have also been characterized for their rheological properties to assess their suitability for being processed using commercial roll to roll manufacturing processes such as screen, flexographic or gravure printing. The inks show shear thinning behavior with a viscosity in the range of 5-6.6 Pa.s at 1000 s-1, which within commercially acceptable ranges.;Applications of these inks range from interconnect for organic solar cells and organic light emitting diodes to radio frequency identification devices (RFID) and membrane switches.
Keywords/Search Tags:Silver, Inks, Temperature, Conductive
Related items