Font Size: a A A

Microwave-assisted synthesis of carbon supported metal/metal oxide nanocomposites and their application in water purification

Posted on:2014-05-31Degree:Ph.DType:Thesis
University:University of Arkansas at Little RockCandidate:Gunawan, GunawanFull Text:PDF
GTID:2451390005999396Subject:Chemistry
Abstract/Summary:
A novel, easy, and cost effective method for synthesizing carbon supported metal/metal oxide nanocomposites has been studied. Carbon supported metal/metal oxide nanocomposites have niche applications in the area of catalysis, fuel cells, electrodes, and more. The method utilizes a commercial microwave and features the addition of a developed graphite-jacket technique with renewable carbon resources, tannin and lignin. The method has been successfully used to synthesize carbon/nickel, carbon/iron oxide, and carbon/nickel phosphide nanocomposites. The method has shown its versatility in the synthesis of carbon nanocomposites. The process is much simpler when compared with the available methods for synthesizing carbon nanocomposites. The synthesized nanocomposites were classified using several characterization techniques, such as electron microscopy, X-ray powder diffraction, surface area analysis, thermogravimetric analysis, and spectrophotometric studies. One application of the carbon nanocomposite is in wastewater remediation. The synthesized carbon/iron oxide nanocomposite was noted as being useful for removing arsenic (As) and phosphorus (P) from contaminated water. The adsorption process of the nanocomposite was critically studied in order to understand the process of removing pollutants from contaminated water. The study shows that the nanocomposites are capable of removing As and P from contaminated water. Kinetic and adsorption isotherm studies were applied to understand the adsorption of As and P onto the adsorbent. Several methods, such as pseudo-first and second order kinetic models, Elovich's equation, and the Weber-Morris intraparticle diffusion model were used to explain the kinetic aspects of the adsorption process. For the adsorption isotherm study, Langmuir and Freundlich isotherm models were applied.
Keywords/Search Tags:Carbon supported metal/metal oxide nanocomposites, Water, Adsorption, Process, Method
Related items