Font Size: a A A

Generation de chemins de couverture pour des operations automatisees de controle non destructif appliquees dans l'industrie aerospatiale

Posted on:2014-05-28Degree:M.Sc.AType:Thesis
University:Ecole Polytechnique, Montreal (Canada)Candidate:Olivieri, PierreFull Text:PDF
GTID:2451390005985431Subject:Engineering
Abstract/Summary:
Non destructive testing (NDT) plays an important role in the aerospace industry during the fabrication and maintenance of the structures built and is used, among other useful applications, to detect flaws such as cracks at an early stage. However, NDT techniques are still mainly done manually, especially on complex aeronautical structures, which then results in several drawbacks. In addition to be difficult and time-consuming, reliability and repeatability of inspection results are likely to be affected, since they rely on each operator's experience and dexterity. The present thesis is part of a larger project (MANU-418) of the Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ). In this project, it has been proposed to develop a system using a 6-DOF manipulator arm to automate three particular NDT techniques often needed in the aerospace industry: eddy current testing (ECT), fluorescent penetrant inspection (FPI), and infrared thermography (IRT). The main objective of the MANU-418 project is to demonstrate the efficiency of the developed system and provide inspection results of surface and near surface flaws (cracks usually) at least as reliably and repeatably as inspection results from a human operator.;One specific objective stemming from the main objective of the project is to develop a methodology and a software tool to generate covering paths adapted for the three aforementioned NDT techniques to inspect the complex surfaces of aerospace structures. The present thesis aims at reaching this specific objective.;At first, geometrical and topological properties of the surfaces considered in this project are defined (flat surfaces, round and straight edges, cylindrical or near cylindrical surfaces, holes). It is also assumed that the 3D model of the surface to inspect is known in advance. Moreover, it has been decided within the framework of the MANU-418 project to give priority to the automation of ECT compared with the other techniques (FPI and IRT). As a result, the methodology developed to generate inspection paths is more closely focused on path constraints relative to the manual operations of ECT using a differential eddy current probe (named here EC probe), but it is developed to be flexible enough to be used with the other techniques as well. Common inspection paths for ECT are usually defined by a sweeping motion using a zigzag pattern with the EC probe in mild contact with the inspected surface. Moreover, the main axis of the probe must keep a normal orientation with the surface, and the alignment of its two coils must always be oriented along the direction of its motion.;A first methodology is then proposed to generate covering paths on the whole surface of interest while meeting all EC probe motion constraints. First, the surface is meshed with triangular facets, and then it is subdivided into several patches such that their geometry and topology are simpler than the whole surface. Paths are then generated on each patch by intersecting their facets with offset section planes defined along a sweeping direction. Furthermore, another methodology is developed to generate paths around an indication (namely a small area where the presence of a flaw is suspected) whose position and orientation are assumed to be known a priori..;Then, a software tool with a graphical user interface has been developed in the MATLAB environment to generate inspection paths based on these methodologies. A set of path parameters can be changed by the user to get desired paths (distance between passes, sweep direction, etc.). Once paths are computed, an ordered list of coordinates (positions and orientations) of the tool is exported in an EXCEL spreadsheet so that it could be used with a real robot. In this research, these data are then used to perform simulations of trajectories (path described as a function of the time) with a MotoMan robot (model SV3XL) using the MotoSim software. After validation of these trajectories in this software (absence of collisions, positions are all reachable, etc.), they are finally converted into instructions for the real MotoMan robot to proceed with experimental tests.;These first simulations and experimentations on a MotoMan robot of the generated paths have given results close to the expected inspection trajectories used manually in the NDT techniques considered, especially for the ECT technique. Nevertheless, it is strongly recommended to validate this path generation method with more experimental tests. For instance, a "test" tool could be manufactured to measure errors of position and orientation of this tool with respect to expected trajectories on a typical complex aeronautical structure. (Abstract shortened by UMI.).
Keywords/Search Tags:NDT, ECT, EC probe, Paths, Tool, Trajectories, Aerospace, Surface
Related items