Font Size: a A A

Synthesis and characterization of ionically bonded diblock copolymers

Posted on:2014-01-26Degree:Ph.DType:Thesis
University:The University of AkronCandidate:Feng, LeiFull Text:PDF
GTID:2451390005486811Subject:Polymer chemistry
Abstract/Summary:
Block copolymers consist of two or more incompatible polymer chains linked by covalent bonds. These block copolymer can separate into nanometer sized domains whose morphology depends upon the size of the block and interactions between them. The properties of block copolymers can be modified and potentially improved by introducing noncovalent interactions to replace covalent linkages between blocks to form supramolecular block copolymers. These kinds of materials combine the microphase separation inherent to block copolymers with the facile synthesis of supramolecular materials thereby affording new and unique materials. This dissertation focuses on synthesis and characterization of PS-b-PMA block copolymers with ion-pair junctions.;Firstly, the chain-end sulfonated polystyrene (&;Secondly, ammonium end functionalized polymethylacrylate (PMA) was synthesized directly by RAFT polymerization using functional RAFT agent. Then chain-end sulfonated polystyrene and ammonium end functionalized polymethylacrylate (PMA) were used to synthesize A-B block copolymers by two different methods: the first method was by mixing two oppositely charged end group functionalized polymers; the second method was to ionically bond a RAFT agent to the chain end of an end sulfonated polymer to generate a supramolecular macro RAFT agent then an A-B block copolymer was prepared by RAFT polymerization using supramolecular macro-RAFT agent. The polymerization kinetics were investigated and the molecular weight and the chemical structure of the block copolymers were characterized by 1H-NMR and SEC. The results show that the ion-bonded supramolecular block copolymer, PS-PMA, have been successfully prepared with controlled molecular weight and narrow distribution.;Thirdly, the morphology of the ion-bonded supramolecular PS-PMA diblock copolymers were investigated by small-angle X-ray scattering (SAXS) and rheological techniques. Several covalently bonded PS-PMA block copolymers were synthesized by RAFT polymerization and their micro domain structures and rheology behaviors were also investigated. The results showed that the electrostatic interactions between the end ion groups are able to overcome the thermodynamic repulsion of two blocks result in the formation of diblock copolymers with similar behaviors and morphology of traditional covalent bonded diblock copolymers and their micro domain structures remain to high temperatures.
Keywords/Search Tags:Block copolymers, Micro domain structures, RAFT agent, Covalent, Synthesis and characterization, Ammonium end functionalized polymethylacrylate, A-B block, Chain-end sulfonated polystyrene
Related items