Font Size: a A A

Effects of Laser Frequency and Multiple Beams on Hot Electron Generation in Fast Ignition

Posted on:2013-07-31Degree:M.SType:Thesis
University:University of Nevada, RenoCandidate:Royle, Ryan BFull Text:PDF
GTID:2450390008465081Subject:Physics
Abstract/Summary:
Inertial confinement fusion (ICF) is one approach to harnessing fusion power for the purpose of energy production in which a small deuterium-tritium capsule is imploded to about a thousand times solid density with ultra-intense lasers. In the fast ignition (FI) scheme, a picosecond petawatt laser pulse is used to deposit ∼10 kJ of energy in ∼10 ps into a small hot-spot at the periphery of the compressed core, igniting a fusion burn wave. FI promises a much higher energy gain over the conventional central hot-spot ignition scheme in which ignition is achieved through compression alone.;Sufficient energy coupling between ignition laser and implosion core is critical for the feasibility of the FI scheme. Laser-core energy coupling is mediated by hot electrons which absorb laser energy near the critical density and propagate to the dense core, depositing their energy primarily through collisions. The hot electron energy distribution plays a large role in achieving efficient energy coupling since electrons with energy much greater than a few MeV will only deposit a small fraction of their energy into the hot-spot region due to reduced collisional cross section. It is understood that it may be necessary to use the second or third harmonic of the 1.05 μm Nd glass laser to reduce the average hot electron energy closer to the few-MeV range. Also, it is likely that multiple ignition beams will be used to achieve the required intensities.;In this study, 2D particle-in-cell simulations are used to examine the effects of frequency doubling and tripling of a 1 μm laser as well as effects of using various dual-beam configurations. While the hot-electron energy spectrum is indeed shifted closer to the few-MeV range for higher frequency beams, the overall energy absorption is reduced, canceling the gain from higher efficiency. For a fixed total laser input energy, we find that the amount of hot electron energy able to be deposited into the core hot-spot is fairly insensitive to the laser configuration used. Our results hint that the more important issue at hand may be divergence and transport of the hot electrons, which tend to spray into 2π radians due to instabilities and current filamentation present in the laser-plasma interaction region.
Keywords/Search Tags:Laser, Energy, Hot electron, Ignition, Frequency, Effects, Beams
Related items