Font Size: a A A

Climatic Dependence of Terrestrial Species Assemblage Structure

Posted on:2014-07-27Degree:Ph.DType:Thesis
University:University of Ottawa (Canada)Candidate:Walker, Kevin RFull Text:PDF
GTID:2450390008453452Subject:Biology
Abstract/Summary:
An important goal of ecological studies is to identify and explain patterns or variation in species assemblages. Ecologists have discovered that global variation in the number of species in an assemblage relates strongly to climate, area, and topographic variability in terrestrial environments. Is the same true for other characteristics of species assemblages?;The focus of this thesis is to determine whether species assemblage structure, defined primarily as the body mass frequency distributions and species abundance distributions relate in convergent ways to a set of a few environmental variables across broad spatial scales.;First, I found that for mammals and trees most of their geographic variation across North and South America in assemblage structure is statistically related to temperature, precipitation, and habitat heterogeneity (e.g. different vegetation types) in convergent ways.;I then examined bird assemblages across islands and continents. Despite the evolutionary and ecological differences between island and continental assemblages, I found that much of the variation in bird assemblage structure depends on temperature, precipitation, land area, and island isolation in congruent patterns in continent and island bird assemblages.;Frank Preston modeled species richness based on the total number of individuals and the number of individuals of the rarest species. Building on Preston’s model, Chapter 2 hypothesized that gradients of diversity correlate with gradients in the number of individuals of the rarest species, which in turn are driven by gradients in temperature and precipitation. This hypothesis assumes that species abundance distributions relate to temperature and precipitation in similar ways anywhere in the world. I found that both the number of individuals of the rarest species (m) and the proportion of species represented by a single individual in samples of species assemblages (Φ) were strongly related to climate. Moreover, global variation in species richness was more strongly related to these measures of rarity than to climate. I propose that variation in the shape of the log-normal species abundance distribution is responsible for global gradients of species richness: rare species (reflected in m and Φ) persist better in benign climates.;Even though body mass frequency distributions of assemblages show convergent patterns in relation to a set of a few environmental variables, the question remains as to what processes are responsible for creating the geographical variation in the body-size distribution of species. Several mechanisms (e.g. heat conservation and resource availability hypotheses) have been proposed to explain this variation. Chapter 5 tested and found no empirical support for the predictions derived from each of these mechanisms; I showed that species of all sizes occur across the entire temperature gradient.;In conclusion, assemblage structure among various taxonomic groups across broad spatial scales relate in similar ways to a set of a few environmental variables, primarily mean annual temperature and mean annual precipitation. While the exact mechanisms are still unknown, I hypothesize several to explain the patterns of convergent assembly.
Keywords/Search Tags:Species, Assemblage, Patterns, Variation, Few environmental variables, Precipitation, Convergent
Related items