Font Size: a A A

Evolution of galaxy structure using visual morphologies in CANDELS and Hydro-ART simulations

Posted on:2014-08-17Degree:Ph.DType:Thesis
University:University of California, Santa CruzCandidate:Mozena, Mark WFull Text:PDF
GTID:2450390005985700Subject:Physics
Abstract/Summary:
The general properties, morphologies, and classes of galaxies in the local Universe are well studied. Most local galaxies are morphologically members of the Hubble sequence and can be crudely separated into elliptical red quiescent galaxies or disky blue star-forming galaxies. This Hubble sequence of relaxed structures has been shown to dominate galaxy populations out to a redshift of z~1. The description of galaxies at earlier times is not well known nor is it understood how and at what epoch the Hubble sequence formed. Of particular interest is the structure of galaxies at z~2. This epoch was an active time for galaxy growth and was the peak epoch for star formation rate, active galactic nuclei activity, and mergers between galaxies.;With the installation of the near-infrared Wide Field Camera 3 (WFC3) on the Hubble Space Telescope in 2009, large area photometric surveys of galaxies were able to be performed for the first time at moderate redshifts (z~2) in wavebands that effectively trace the older stellar populations and stellar mass of the galaxies rather than the clumpy star-forming regions. Using WFC3 HST images, an in-depth morphology classification system was developed to probe the galaxy populations at higher redshifts (focusing on z~2). These visual classifications were used with other galaxy parameters (stellar mass, color, star formation rate, radius, Sersic profiles, etc) to identify and quantify the moderate redshift galaxy populations and study how these populations changed with time to form the relaxed Hubble sequence Universe we observe today.;Additionally, these same tools that were used to probe galaxy populations at z~2 in the observed Universe were also used on simulated galaxy images produced from state-of-the-art cosmological simulations. These Hydro-ART simulations build artificial galaxies that are compared to observations so as to shed light on the relevant mechanisms in galaxy evolution. By classifying and comparing the populations present in the simulations with our observations, we are able to probe the model's ability to create realistic galaxy populations.;The first chapter of this thesis focuses on visually classifying and studying galaxy populations at z~2 and how they change with redshift for a given mass. The second chapter focuses on applying our techniques to Hydro-ART simulations at z~2 and comparing these mock 'observed' simulations with our real WFC3 HST observations. Both of these chapters closely resemble manuscripts in the process of being submitted for independent publication.
Keywords/Search Tags:Galaxy, Galaxies, Simulations, WFC3, Hydro-art, Hubble sequence
Related items