Font Size: a A A

Bioactive terpene production associated with Caribbean gorgonians from the genera Pseudopterogorgia and Eunicea: Discovery of a sustainable production method

Posted on:2007-03-17Degree:Ph.DType:Thesis
University:Florida Atlantic UniversityCandidate:Newberger, Nealie CFull Text:PDF
GTID:2449390005968810Subject:Biology
Abstract/Summary:
Research directed toward renewable, non-destructive sources of bioactive marine derived compounds, is becoming more important everyday. Marine soft corals known as sea whips are a prolific source of such biologically active compounds. One particular organism, Eunicea fusca, possesses diterpene arabinose glycosides with potent antiinflammatory activity that rival the industry standard indomethicin. Fuscocide B is known to inhibit phorbol myristate acetate (PMA)-induced ear edema in murine models, is a minor secondary metabolite and it is therefore difficult to acquire in large quantities. Alternatively, fuscol and eunicol, are known to have similar antiinflammatory activity and are major secondary metabolites which are structurally similar to fuscocide B and are also produced by E. fusca. We have found that fuscol and eunicol can be extracted from the holobiont, and Symbiodinium (Symbiodinium sp.) cells isolated from E. fusca. Similarly, diterpene glycosides, known as pseudopterosins, have been isolated from the the holobiont, and purified Symbiodinium of Pseudopterogorgia elisabethae. Pseudopterosins are also known to possess anti-inflammatory and analgesic properties superior to that of existing drugs.;Since many chemically unique metabolites demonstrating bioactive properties have been introduced into pre-clinical and clinical trials I-III5 and the supply issue has been duly highlighted, it has become advantageous to determine the source of these compounds in each of the above mentioned species and determine if a renewable, non-destructive source can be maintained. Data has been presented suggesting that the actual source of the pseudopterosins is not the coral, but actually the dinoflagellate symbiont associated with Pseudopterogorgia elisabethae. Therefore, we have examined cryopreservation of the dinoflagellate symbionts, induction of terpene biosynthesis in the dinoflagellate symbionts, as well as various cell culture techniques in order to better understand the ecological role of terpene biosynthesis in the symbionts and the host corals. The data obtained in the following studies reveals a bacterial source for the production of bioactive secondary metabolites from Eunicea fusca and lends support to a possible bacterial producing trend in gorgonians.
Keywords/Search Tags:Bioactive, Production, Eunicea, Source, Terpene, Pseudopterogorgia, Fusca
Related items