Font Size: a A A

Geometric control and motion planning for three-dimensional bipedal locomotion

Posted on:2011-08-30Degree:Ph.DType:Thesis
University:University of Illinois at Urbana-ChampaignCandidate:Gregg, Robert De Moss, IVFull Text:PDF
GTID:2448390002968910Subject:Engineering
Abstract/Summary:
This thesis presents a hierarchical geometric control approach for fast and energetically efficient bipedal dynamic walking in three-dimensional (3-D) space to enable motion planning applications that have previously been limited to inefficient quasi-static walkers. In order to produce exponentially stable hybrid limit cycles, we exploit system energetics, symmetry, and passivity through the energy-shaping method of controlled geometric reduction . This decouples a subsystem corresponding to a lower-dimensional robot through a passivity-based feedback transformation of the system Lagrangian into a special form of controlled Lagrangian with broken symmetry, which corresponds to an equivalent closed-loop Hamiltonian system with upper-triangular form. The first control term reduces to mechanically-realizable passive feedback that establishes a functional momentum conservation law that controls the "divided" cyclic variables to set-points or periodic orbits. We then prove extensive symmetries in the class of open kinematic chains to present the multistage application of controlled reduction. A reduction-based control law is derived to construct straightahead and turning gaits for a 4-DOF and 5-DOF hipped biped in 3-D space, based on the existence of stable hybrid limit cycles in the sagittal plane-of-motion. Given such a set of asymptotically stable gait primitives, a dynamic walker can be controlled as a discrete-time switched system that sequentially composes gait primitives from step to step. We derive "funneling" rules by which a walking path that is a sequence of these gaits may be stably followed by the robot. The primitive set generates a tree exploring the action space for feasible walking paths, where each primitive corresponds to walking along a nominal arc of constant curvature. Therefore, dynamically stable motion planning for dynamic walkers reduces to a discrete search problem, which we demonstrate for 3-D compass-gait bipeds. After reflecting on several connections to human biomechanics, we propose extensions of this energy-shaping control paradigm to robot-assisted locomotor rehabilitation. This work aims to offer a systematic design methodology for assistive control strategies that are amenable to sequential composition for novel progressive training therapies.
Keywords/Search Tags:Motion planning, Geometric, 3-D, Walking, System
Related items