Font Size: a A A

Charge injection and transport in regioregular poly(3-hexylthiophene)-based field-effect transistors

Posted on:2011-05-30Degree:Ph.DType:Thesis
University:Carnegie Mellon UniversityCandidate:Singh, Kumar AbhishekFull Text:PDF
GTID:2448390002963906Subject:Chemistry
Abstract/Summary:
Organic (semi)conductors are poised as never before to transform the electronics industry towards unprecedented versatility. In this thesis, we have taken an experimental approach to address the effect of nanostructure and the energy-level alignment at the metal/polymer interface on charge injection and transport in regioregular poly(3-hexylthiophene) (rr-P3HT) based field-effect transistors (FETs).Photoemission spectroscopy was also conducted to investigate the energy level alignment at bottom-contact (polymer-on-metal) and top-contact (metal-on-polymer) geometries for high work function metals (Au, Pt) and rr-P3HT. The Fermi energy level was found to be pinned at the polaronic energy level within the band gap of rr-P3HT resulting in barrier-less interfaces for charge injection. Photoemission spectroscopy studies of the metal-on-polymer configuration also provided insight into the chemical structure of the metal/polymer interface. Platinum was found to react with sulfur from the thiophene ring whereas Au was found to be relatively unreactive.We found that the mobility and contact resistance in rr-P3HT based FETs show an inverse relationship, and that both properties were affected by the nanostructure of the polymer proving that that charge injection, in addition to charge transport, is significantly affected by the bulk-transport properties of rr-P3HT. Thereafter we successfully recessed the contacts into the SiO 2 dielectric to minimize the effect of the step between the metal contacts and the dielectric on the polymer nanomorphology. The planarization of the devices resulted in a dramatic improvement of the nanomorphology of rr-P3HT reflected as an improvement in charge injection as evident from the decrease in contact resistance values. Gold contacts were also modified by treating them with self-assembled monolayers (SAMs) of aromatic thiols. Electron-poor (electron-rich) SAMs resulted in an increase (decrease) in the Au work function because of the electron-withdrawing (-donating) tendency of the polar molecules. The change in metal work-function by SAM modification also resulted in a modulation of the contact resistance. While there was a clear effect on charge injection upon modification of the contacts, either by SAMs or planarization, the mobility values improved only in the short-channel devices indicating that at longer channels the OFETs are channel-limited because of grain-boundary limited charge transport.
Keywords/Search Tags:Charge, Transport, Effect
Related items