Font Size: a A A

Physical and polarimetric C-band microwave scattering properties of first-year Arctic sea ice during the advanced melt season

Posted on:2011-01-02Degree:Ph.DType:Thesis
University:University of Calgary (Canada)Candidate:Scharien, RandallFull Text:PDF
GTID:2448390002954992Subject:Physical oceanography
Abstract/Summary:
In this thesis, the physical, dielectric, and polarimetric microwave C-band properties of first-year sea ice (FYI) during the advanced melt season are investigated. Advanced melt is the most dynamic and least understood season in the annual cycle of Arctic sea ice due to rapid, small-scale, phase changes associated with melt processes and the occurrence of melt ponds on the ice surface. Measurements of the physical, structural, and dielectric properties of advanced melt FYI, combined with in-situ and spaced-based measurements of C-band microwave scattering, form the basis of this research. A physical model of the medium is created and physical controls on its C-band, like-polarized, backscatter response are evaluated using a multi-layer surface and volume scattering model and in-situ scattering observations. C-band microwave scattering from bare FYI is shown to be dominated by volumetric moisture content driven fluctuations in the dielectric properties, as well as structural variability, of desalinated upper ice layers. The C-band polarimetric scattering properties of surface features---wet snow, bare ice, and melt ponds---are investigated for high-Arctic and marginal ice environments, and dominant scattering mechanisms are theorized. Results demonstrate the potential for the exploitation of polarization diversity for the detection of advanced melt FYI geophysical information using spaceborne synthetic aperture radar (SAR). This knowledge is extended to the application of ENVISAT-ASAR imagery for the regional scale mapping of advanced melt FYI surface albedo using a multi-scale, object-based image analysis (OBIA) approach.
Keywords/Search Tags:Advanced melt, Sea ice, C-band, Physical, Polarimetric, Surface
Related items