Font Size: a A A

Breast cancer stem cells and radiation

Posted on:2008-06-12Degree:Ph.DType:Thesis
University:University of California, Los AngelesCandidate:Phillips, Tiffany MarieFull Text:PDF
GTID:2444390005464828Subject:Physics
Abstract/Summary:
The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's.; Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population.; Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal.; The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1 ligand, Jagged-1, and this was complemented by radiation induced Notch-1 activation. Studies also linked hypoxia and BCSC renewal through Epo signaling. Treatment with rhEpo induced an increase in BCSC's, which again was due to rhEpo induced Jagged-1 expression and subsequent Notch-1 activation.; This thesis suggests that radiation and rhEpo induce Jagged-1 expression in non-stem cells, which then induce Notch-1 activation in adjacent stem cells, and results in symmetric cancer stem cell self-renewal.
Keywords/Search Tags:Cancer stem, Radiation, Notch-1 activation, BCSC population, Studies
Related items