Font Size: a A A

Nonhomologous end-joining: TDP1-mediated processing, ATM-mediated signaling

Posted on:2010-05-26Degree:Ph.DType:Thesis
University:Virginia Commonwealth UniversityCandidate:Hawkins, Amy JaneFull Text:PDF
GTID:2444390002974431Subject:Biology
Abstract/Summary:
This thesis investigates two separate features of nonhomologous end-joining (NHEJ) DNA repair: end processing, and DNA repair kinase signaling. DNA end processing was investigated in a mouse model of hereditary spinocerebellar ataxia with axonal neuropathy (SCAN1), a congenital neurodegenerative disease. SCAN1 is caused by a homozygous H493R mutation in the active site of tyrosyl-DNA phosphodiesterase (TDP1). To address how the H493R mutation elicits the specific pathologies of SCAN1 and to further elucidate the role of TDP1 in processing DNA end modifications, we generated a Tdp1 knockout mouse and characterized their behavior and specific repair deficiencies in extracts of embryonic fibroblasts from these animals. While Tdp1(-/-) mice appear phenotypically normal, extracts from Tdp1(-/-) fibroblasts exhibited deficiencies in processing 3'-phosphotyrosyl single-strand breaks and 3'-phosphoglycolate (PG) double-strand breaks (DSBs). Supplementing Tdp1(-/-) extracts with H493R TDP1 partially restored processing of 3'-phosphotyrosyl single-strand breaks, but with evidence of persistent covalent adducts between TDP1 and DNA, consistent with a proposed intermediate-stabilization effect of the SCAN1 mutation. However, H493R TDP1 supplementation had no effect on PG termini on 3' overhangs of DSBs; these remained completely unprocessed. Altogether, these results suggest that for 3'-PG overhang lesions, the SCAN1 mutation confers loss of function, while for 3'- phosphotyrosyl lesions, the mutation uniquely stabilizes a reaction intermediate. Furthermore, there is evidence that TDP1 also localizes to mitochondria, and mitochondrial DNA damage should not be excluded from significantly contributing to SCAN1 pathology.;The effect of ATM signaling on NHEJ was investigated via a novel vector that allows for inducing I-SceI-mediated DNA DSBs that can then be analyzed for NHEJ repair events by fluorescence- and PCR-based methods. Using highly specific DNA kinase inhibitors and the repair cassette, we showed that inhibiting ATM reduced NHEJ by 80% in a U87 glioma model. Analysis of the PCR products from the NHEJ repair vector by PsiI restriction cleavage allowed for assessment of the fidelity of the NHEJ repair: inhibiting ATM reduced high-fidelity NHEJ by 40%. Together, these results suggest that ATM is critical for NHEJ of I-SceI DSBs and for high-fidelity repair, possibly due to ATM's effects on chromatin architecture surrounding the DSB.
Keywords/Search Tags:NHEJ, TDP1, ATM, Processing, DNA, Repair, SCAN1, Dsbs
Related items