Font Size: a A A

Characterization of shear and bending stiffness for optimizing shape and material of lightweight beams

Posted on:2009-12-02Degree:M.EngType:Thesis
University:McGill University (Canada)Candidate:Amany, Aya Nicole MarieFull Text:PDF
GTID:2442390002498162Subject:Engineering
Abstract/Summary:
Optimized slender and short-thick beams are used in building, aircraft and machine structures to increase performance at a lower material cost. A previous work proposes an optimum shape, material and size selection model to design lightweight slender beams under pure bending. In short-thick beams, the transverse shear effects are no longer negligible and impact the choice of the optimum shape. This work extends such an optimum selection model to consider both slender and short-thick beams, by formulating the total beam stiffness design requirement as a combination of shear and bending stiffness. Selection charts are developed to show the impact of design variables, such as shape, size, material and slenderness, on the total beam stiffness. The model of total beam stiffness is validated against computational results from finite element analyses of beam models. A case study demonstrates the use of the selection charts to compare the performance of beams at the conceptual design stage.
Keywords/Search Tags:Beams, Material, Stiffness, Shape, Shear, Bending, Selection
Related items