Font Size: a A A

Organic/inorganic nanocomposite materials by electrospinning and their properties

Posted on:2008-04-11Degree:Ph.DType:Thesis
University:State University of New York at Stony BrookCandidate:Wang, GuanFull Text:PDF
GTID:2441390005466918Subject:Engineering
Abstract/Summary:
One-dimensional (1D) nanostructures, such as nanowires, nanobelts, nanofibers and nanotubes, have been the focus of intensive research due to their peculiar structures and resultant fascinating properties. However, the applications of 1D nanostructures have been hindered by the slow progress of the synthesis and characterization methods for these nanoscaled materials. Well controlled dimensionality, tailorable morphology and assembly, high phase purity and controllable crystallinity are major concerns when generating these nanostructures.;In summary, the electrospinning technique provides a versatile method for synthesizing and assembling 1D nanocomposite structures. The electrospun composite nanofibers showed promising electrical and mechanical properties, which may find applications for gas sensors, reinforced fibrous materials and nano-electrical devices.;In this work, a relatively simple technique---electrospinning---has been introduced for the preparation of 1D organic/inorganic nanocomposite materials. Materials under investigation include polymer/metal oxide (WO 3, MoO3) composite nanofibers and polymer/MWNT composite nanofibers. Notably, peculiar nanostructures, such as polycrystalline nanowires, nanoplatelets and nanobelts, can also be obtained after post-calcination processing on the nanocomposite materials. Spectroscopy techniques, such as XRD, SEM, TEM, AFM and Raman have been carried out to obtain structural and morphological information from the electrospun composite nanofibers. Meanwhile, some advanced characterization methods and measurements have been developed and designed to investigate the nanofibers from a basic science view point as to their properties. Specific designs of experiment include: synchrotron-based in situ XRD for phase transition monitoring; gas flow control bench for sensitivity measurement; three-point-bending by AFM for mechanical property measurement.
Keywords/Search Tags:Nanocomposite materials, Nanofibers, Nanostructures
Related items