Multiscale Modelling of Electronic and Thermal Transport : Thermoelectrics, Turbostratic 2D Materials and Diamond/c-BN HEM | | Posted on:2018-02-07 | Degree:Ph.D | Type:Thesis | | University:North Carolina State University | Candidate:Narendra, Namita | Full Text:PDF | | GTID:2441390005458210 | Subject:Nanotechnology | | Abstract/Summary: | PDF Full Text Request | | Multiscale modelling has become necessary with the advent of low dimensional devices as well as use of heterostructures which necessitates atomistic treatment of the interfaces. Multiscale methodology is able to capture the quantum mechanical atomistic details while enabling the simulation of micro-scale structures at the same time. In this thesis, multiscale modelling has been applied to study transport in thermoelectrics, turbostratic 2D MoS2/WS 2 heterostructure and diamond/c-BN high mobility electron transistor (HEMT).;The possibility of enhanced thermoelectric properties through nanostructuring is investigated theoretically in a p-type Bi2Te3/Sb 2Te3 heterostructure. A multi-scale modeling approach is adopted to account for the atomistic characteristics of the interface as well as the carrier/phonon transport properties in the larger scales. The calculations clearly illustrate the desired impact of carrier energy filtering at the potential barrier by locally boosting the power factor over a sizable distance in the well region. Further, the phonon transport analysis illustrates a considerable reduction in the thermal conductivity at the heterointerface. Both effects are expected to provide an effective means to engineer higher zT in this material system.;Next, power factor enhancement through resonant doping is explored in Bi2Te3 based on a detailed first-principles study. Of the dopant atoms investigated, it is found that the formation of resonant states may be achieved with In, Po and Na, leading potentially to significant increase in the thermoelectric efficiency at room temperature. While doping with Po forms twin resonant state peaks in the valence and conduction bands, the incorporation of Na or In results in the resonant states close to the valence band edge. Further analysis reveals the origin of these resonant states. Transport calculations are also carried out to estimate the anticipated level of enhancement.;Next, in-plane and cross-plane transport in turbostratic MoS2/WS 2 heterostructure is investigated. Since it is a major challenge in controlling the stacking orientation while growing these heterostructures, the electronic transport properties can experience a sizeable impact via misorientation. Small rotation angles lead to large unit cells with thousands of atoms necessiating an analytical tight binding approach. Tight binding model is developed for MoS2/WS2 heterostructure by fitting to DFT data which is extended to the turbostratic case. Cross-plane electronic transport is then analyzed by NEGF and Landauer formalism. It is found that in-plane transport remains largely unaffected, while inter-layer electrical resistance increases upto 10% for holes and 30% for electrons.;Finally, diamond/c-BN HEMT is proposed. Diamond is a promising material for high-power electronic applications in both the dc and rf domains. However, the predicted advantages are yet to be realized due to a number of technical challenges. In particular, n-type devices have not been feasible due to the large ionization energies and low thermodynamic solubility limits of n-dopants. Motivated by the recent advances in nonequilibrium processing, we propose and theoretically examine a diamond/c-BN HEMT that can circumvent the critical limitations. A first-principles calculation suggests the desired type-I alignment at the heterojunction of these two nearly lattice matched semiconductors. The investigation also illustrates that a large sheet carrier density in excess of 5 x 1012 cm--2 can be induced in the undoped diamond channel by the gate bias. A subsequent analysis of a simple prototype design indicates that the proposed device can achieve large current drive (∼ 10 A/cm), low Ron (∼ 0.05 mO · cm2), and high f T (∼ 300 GHz) simultaneously. | | Keywords/Search Tags: | Transport, Multiscale, Modelling, Diamond/c-bn, Electronic, Low, Turbostratic, Heterostructure | PDF Full Text Request | Related items |
| |
|